Стандарты 802.11 b g. Все существующие стандарты Wi-Fi-сетей. Если у вас другой маршрутизатор, или настройки

При покупке 5ГГц роутера слово DualBand (Двухдиапазонный) отвлекает наше внимание от более важной сути, стандарта Wi-Fi, использующего несущую 5ГГц. В отличие от стандартов использующих несущую 2.4ГГц, уже давно знакомых и понятных, 5ГГц устройства могут использоваться в комплексе с 802.11n или 802.11ac стандартами (в дальнейшем AC стандарт и N стандарт).

Группа стандартов Wi-Fi IEEE 802.11 эволюционировала довольно динамично, от IEEE 802.11a, который обеспечивал скорости до 2 Мбит/с , через 802.11b и 802.11g, которые давали скорости до 11 Мбит/с и 54 Мбит/с соответственно. Затем появился стандарт 802.11n или просто n-стандарт. N-стандарт был настоящим прорывом, так как теперь через одну антенну можно было передавать трафик на немыслимой по тем временам скорости 150Мбит . Это достигалось за счёт использования передовых технологий кодирования (MIMO), более тщательного учёта особенностей распространения ВЧ волн, технологии удвоенной ширины канала, не статичный защитный интервал определяемый таким понятием как индекс модуляции и схемы кодирования.

Принципы функционирования 802.11n

Уже привычный 802.11n может применяться в одном из двух диапазонов 2.4ГГц и 5.0 ГГц. На физическом уровне кроме усовершенствованной обработка сигнала и модуляции, добавлена возможность одновременной передачи сигнала через четыре антенны , через каждую антенну можно пропустить до 150Мбит/с , т.е. это теоретически 600Мбит. Однако, учитывая, что одновременно антенна работает либо на приём либо на вещание, то скорость передачи данных в одну сторону не превысит 75Мбит/с на антенну.

Многоканальный вход/выход (MIMO)

Впервые поддержка этой технологии появилась в стандарте 802.11n. MIMO расшифровывается как Multiple Input Multiple Output, что в переводе - многоканальный вход многоканальный выход.

С помощью технологии MIMO реализована способность одновременного приема и передачи нескольких потоков данных через несколько антенн, а не одну.

Стандарт 802.11n определяет различные конфигурации антенн от "1х1" до "4х4". Также возможны несиметричные конфигурации, например, "2х3", где первое значение означает количество передающих, а второе количество принимающих антенн.

Очевидно, максимальную скорость приёма передачи возможно достичь только при использовании схемы "4х4". На самом деле количество антенн не увеличивает скорость само по себе, однако это позволяет применять различные усовершенствованные методы обработки сигналов, которые автоматически выбираются и применяются устройством, в том числе и исходя из конфигурации антенн. Например, схема "4х4" с модуляцией 64-QAM обеспечивает скорость до 600 Мбит/с, схема "3х3" и 64-QAM обеспечивает скорость до 450 Мбит/с, а схемы "1х2" и "2х3" до 300 Мбит/с.

Ширина полосы пропускания канала 40 МГц

Особенностью стандарта 802.11n является удвоенная ширина 20МГц канала, т.е. 40 МГц .Возможность поддержки 802.11n устройствами работающих на несущих 2.4ГГц и 5ГГц. В то время как стандарт 802.11b/g работает только на 2.4 ГГц, а 802.11a работает на частоте 5 ГГц. В полосе частот 2.4 ГГц для беспроводных сетей доступны всего 14 каналов, из них первые 13 разрешены в СНГ, с интервалами 5 МГц между ними. Устройства использующие стандарт 802.11b/g используют каналы шириной 20 МГц. Из 13 каналов 5 пересекающихся. Для исключения взаимных помех между каналами необходимо, чтобы их полосы отстояли друг от друга на 25 МГц. Т.е. не пересекающимися будут только три канала на полосе 20 МГц: 1, 6 и 11.

Режимы работы 802.11n

Стандарт 802.11n предусматривает работу в трёх режимах: High Throughput (читый 802.11n), Non-High Throughput (полная совместимость с 802.11b/g) и High Throughput Mixed (смешанный режим).

High Throughput(НТ) - режим с высокой пропускной способностью.

Точки доступа 802.11n используют режим High Throughput. Данный режим абсолютно исключает совместимость с предыдущими стандартами. Т.е. усройства не поддерживающие n-стандарт подключиться не смогут. Non-High Throughput(Non-HT) - режим с невысокой пропускной способностью Чтобы устаревшие устройства могли подключиться, все кадры отправляются в формате 802.11b/g. В этом режиме используется ширина канала 20 МГц для обеспечения обратной совместимости. При использовании этого режима данные передаются со скоростью, поддерживаемой самым медленным устройством, подключённым к данной точке доступа (или Wi-Fi роутеру).

High Throughput Mixed - смешанный режим с высокой пропускной способностью. Смешанный режим позволяет устройству работаь одновременно по стандарту 802.11n и 802.11b/g. Обеспечит обратную совместимость устаревших устройств, и устройств использующих стандарт 802.11n. Однако, пока старое устройство осуществляет прием-передачу данных, устаройство поддерживающее 802.11n ждёт своей очереди, и это сказывается на скорости. Также очевидно, что, чем больше трафика будет идти по стандарту 802.11b/g, тем меньшую производительность сможет показать 802.11n устройство в режиме High Throughput Mixed.

Индекс модуляции и схемы кодирования (MCS)

Стандарт 802.11n определяет понятие "Индекс модуляции и схемы кодирования"(Modulation and Coding Scheme). MCS - это простое целое число, присваиваемое варианту модуляции (всего возможно 77 вариантов). Каждый вариант определяет тип модуляции радиочастоты (Type), скорость кодирования (Coding Rate), защитный интервал (Short Guard Interval) и значения скорости передачи данных. Сочетание всех этих факторов определяет реальную физическую (PHY) скорость передачи данных, начиная от 6,5 Мбит/с до 600 Мбит/с (данная скорость может быть достигнута за счет использования всех возможных опций стандарта 802.11n).

Некоторые значения индекса MCS определенны и показаны в следующей таблице:


Расшифруем значения некоторых параметров.

Короткий защитный интервал SGI (Short Guard Interval) определяет интервал времени между передаваемыми символами. В устройствах стандарта 802.11b/g используется защитный интервал 800 нс, а в устройствах 802.11n есть возможность использования паузы всего в 400 нс. Короткий защитный интервал (SGI) повышает скорость передачи данных на 11 процентов. Чем короче этот интервал тем большее количество информации можно передать в единицу времени, однако, при этом точность определения символов падает, поэтому разработчиками стандарта подобрано оптимальное значение этого интервала.

MCS значения от 0 до 31 определяют тип модуляции и схемы кодирования, которые будут использоваться для всех потоков. MCS значения с 32 по 77 описывают смешанные комбинации, которые могут быть использованы для модуляций от двух до четырех потоков.

Точки доступа 802.11n должны поддерживать MCS значения от 0 до 15, в то время как 802.11n станции должны поддерживать MCS значения от 0 до 7. Все другие значения MCS, в том числе связанные с каналами шириной 40 МГц, коротким защитным интервалом (SGI), являются опциональными, и могут не поддерживаться.

Особенности AC стандарта

В реальных условиях ни одному стандарту не удалось добиться максимума своей теоретической производительности, поскольку на сигнал влияет множество факторов: электромагнитные помехи от бытовой техники и электроники, препятствия на пути сигнала, отражения сигнала, и даже магнитные бури. Из-за этого производители и продолжают работать над созданием еще более эффективных вариантов стандарта Wi-Fi, более приспособленного не только для домашнего, но и активного офисного использования, а также построения расширенных сетей. Благодаря этому стремлению, совсем недавно, родилась новая версия IEEE 802.11 — 802.11ac (или просто AC стандарт ).

Принципиальных отличий от N в новом стандарте не слишком много, но все они направлены на увеличение пропускной способности беспроводного протокола. В основном разработчики пошли путём улучшения преимуществ стандарта N. Самое заметное — расширение каналов MIMO с максимальных трех до восьми. Это значит, что вскоре мы сможем увидеть в магазинах беспроводные маршрутизаторы с восемью антеннами. А восемь антенн — это теоретическое удвоение пропускной способности канала до 800 Мбит/с, это не говоря о возможных шестнадцатиантенных устройствах.

Устройства стандартов 802.11abg работали на каналах шириной пропускания 20 МГц, а чистый N предполагает каналы шириной 40 МГц. В новом стандарте предусмотренно, что AC роутеры имеют каналы на 80 и 160 МГц, а это означает удвоение и учетверение канала удвоенной ширины.

Стоит отметить предусмотренную в стандарте улучшенную реализацию технологии MIMO — технологию MU-MIMO. Старые версии протоколов, совместимые со стандартом N, поддерживали полудуплексную передачу пакетов от устройства к устройству. То есть в момент, передачи пакета одним устройством, другие устройства могут работать только на прием. Соответственно, если одно из устройств подключается к роутеру, используя старый стандарт, тогда и другие будут работать медленнее из-за увеличившегося времени передачи пакетов устройству использующему старый стандарт. Это может быть причиной понижения качества характеристик беспроводной сети в случае, если к ней подключено много таких устройств. Технология MU-MIMO решает эту проблему, создавая многопоточный канал передачи, при использовании которого остальные устройства не ждут своей очереди. В то же время AC роутер должен быть обратносовместим с предыдущими стандартами.

Однако, конечно же есть и ложка дёгтя. В настоящее время по прежнему абсолютное большинство ноутбуков, планшетов, смартфонов не поддерживают не только AC стандарт Wi-Fi, а даже не умеют работать на несущей 5ГГц. Т.е. и 802.11n на 5ГГц им недоступна. Также сами AC роутеры и точки доступа могут в несколько раз превышать по стоимости роутеры ориентированные на использование стандарта 802.11n.

Стандарт беспроводных локальных сетей 802.11ac был представлен еще зимой 2011 года, когда специалисты из международной некоммерческой ассоциации IEEE утвердили первую тестовую версию нового высокоскоростного и модернизированного Wi-Fi. Ко всеобщему удивлению, уже в середине ноября производитель Quantenna продемонстрировал дебютный, базовый чипсет, который хорошо работает в одном тандеме с роутерами и другими сетевыми устройствами. В скором времени в специализированных магазинах появились ноутбуки, смартфоны и другие девайсы совместимые с этим стандартом.

Следует отметить и одно из важных мероприятий, которое ускорило развитие скоростного беспроводного Wi-Fi. Ведь именно на выставке CES были анонсированы новые контроллеры американской корпорацией Broadcom, которые захотели внедрить в своем производстве такие крупные IT-компании, как Lenovo, ZTE, Huawei…

Предлагаю рассмотреть какие преимущества имеет стандарт 802.11ac и в чем он отличается от предыдущего собрата 802.11n?

  1. Наиболее важное отличие заключается в том, что новый Wi-Fi имеет скорость в три раза больше, что положительно отображается на воспроизведении потокового мультимедийного контента.

    Таким образом, передача и воспроизведение видео высокой четкости (HD, FullHD) по беспроводному Wi-Fi каналу при определенных условиях будет без перерывов и до загрузок, если ваше устройство не ограничено аппаратным обеспечением (касается ). Мобильные игры и прочие приложения тем более будут «проходить» по сети на должном уровне.
  2. Еще одно полезное свойство гигабайтного Wi-Fi — это расширенный диапазон и стабилизированный сигнал, покрывающий более широкую площадь, что дает возможность при помощи одного маршрутизатора покрыть беспроводным сигналом квартиру внушительных размеров. Это возможно благодаря разработанной технологии направленного формирования сигнала (beamforming).

    Стандарт n тоже поддерживал данную технологию, но на уровне опций и к тому же сигнал некорректно формировался. Технология бимформинг определяет месторасположения клиент-устройств (ноутбук, планшет, ) и направляет сигнал прямо на них.

    Такой подход помог увеличить качество беспроводного сигнала Wi-Fi.
  3. Не для кого не секрет, что электротехника, использующая Wi-Fi стандарт n — работает диапазонной частоте 2.4 Гигагерц. На этой же частоте работают не только планшеты и смартфоны, но и микроволновые печки и прочая бытовая техника. Такое пересечение на частоте приводило , что заставляло искать . Стандарт 802.11ac, представленный Институтом, не имеет проблем с помехами и умеет работать на скорости в 1,3 Гбит/с на эффективной частоте в 5 ГГц.
  4. Кроме этого, когда условия не позволяют задействовать широкие каналы, стандарт 802.11ас имеет преимущества над старшим «братом» 802.11n. В чем же оно заключается? Дело в том, что новая модуляция 256-QAM, например, при 40 МГц с двумя потоками, обеспечит 400 Mbps, а ранее разработанный 802.11n давал только 300 Mbps. Кроме этого, на стандарте 802.11n девайсы не способны динамически поменять ширину канала, если того потребуют определенные обстоятельства. А вот в 802.11ac заложена такая возможность, которая проверена специалистами и временем.

    К примеру, при благоприятных условиях, клиент и сетевое устройство могут начать с канала 80 МГц, а при изменении условий в худшую сторону, перейти на на 40 или 20 МГц. Переход на более узкие каналы, осуществляется и при условии, что уровень сигнала не дает возможности работать на широком канале. С технической точки зрения, чем уже канал и чем меньше потоки в пространстве, тем меньше возникают требования к уровню сигнала.

К примеру, спецификация Wi -Fi 802.11ас с шириной канала 80 МГц требует, как минимум — 76 dBm, а каналу шириной 20 МГц уже — 82 dBm. Таким образом, планшеты, компьютеры, Smart TV и другие устройства у края зоны покрытия автоматически переходят на более узкие каналы. Международная ассоциация совместно с Wi-Fi Alliance создала специальную специфику, и эксперты в области IT уверяют, что с технологией совместимы более миллиарда устройств.

Всем привет! Будем сегодня снова говорить о маршрутизаторах, беспроводной сети, технологиях…

Решил подготовить статью, в которой рассказать о том, что же это за такие непонятные буквы b/g/n, которые можно встретить при настройке Wi-Fi роутера , или при покупке устройства (характеристики Wi-Fi , например 802.11 b/g) . И в чем отличие между этими стандартами.

Сейчас постараемся разобраться что это за настройки и как их сменить в настройках маршрутизатора и собственно для чего изменять режим работы беспроводной сети.

Значит b/g/n – это режим работы беспроводной сети (Mode) .

Существуют следующее группы стандартов:

IEEE 802.11а, IEEE 802.11b, IEEE 802.11g, IEEE 802.11n и IEEE 802.11ac дописывают работу сетевого оборудования (физический уровень):
IEEE 802.11d. IEEE 802.11e. IEEE 802.11i. IEEE 802.11j. IEEE 802.11h и IEEE
802.11r - параметры среды, частоты радиоканала, средства безопасности, способы передачи мультимедийных данных и т. д.;
IEEE 802.11f IEEE 802.11с- принцип взаимодействия точек доступа между собой, работу радиомостов и т. п.

IEEE 802.11

Стандарт IE ЕЕ 802.11 был «первенцем» среди стандартов беспроводной сети. Работу над ним начали еще в 1990 году. Как и полагается, этим занималась рабочая группа из IEEE, целью которой было создание единого стандарта для радиооборудования, которое работало на частоте 2,4 ГГц. При этом ставилась задача достичь скорости 1 и 2 Мбит/с при использовании методов DSSS и FHSS соответственно.

Работа над созданием стандарта закончилась через 7 лет. Цель была достигнута но скорость. которую обеспечивал новый стандарт, оказалась слишком малой дли современных потребностей. Поэтому рабочая группа из IEEE начала разработку новых, более скоростных, стандартов.
Разработчики стандарта 802.11 учитывали особенности сотовой архитектуры системы. Почему сотовой? Очень просто: достаточно вспомнить, что волны распространяются в разные стороны на определенный радиус. Получается, что внешне зона напоминает соту. Каждая такая сота работает под управлением базовой станции , в качестве которой выступает точка доступа. Часто соту называют базовой зоной обслуживания .

Чтобы базовые зоны обслуживания могли общаться между собой, существует специальная распределительная система (Distribution System. DS). Недостатком распределительной системы стандарта 802.11 является невозможность роуминга.

Стандарт IEEE 802.11 предусматривает работу компьютеров без точки доступа, в составе одной соты. В этом случае функции точки доступа выполняют сами рабочие станции.

Этот стандарт разработан и ориентирован на оборудование, функционирующее в полосе частот 2400-2483,5 МГц. При этом радиус соты достигает 300 м, не ограничивая топологию сети.

IEEE 802.11а

IEEE 802.11a это один из перспективных стандартов беспроводной сети, который рассчитан на работу в двух радиодиапазонах - 2,4 и 5 ГГц. Используемый метод OFDM позволяет достичь максимальной скорости передачи данных 54 Мбнт/с. Кроме этой, спецификациями предусмотрены и другие скорости:

  • обязательные 6. 12 н 24 Мбнт/с;

  • необязательные - 9, 18.3G. 18 и 54 Мбнт/с.

Этот стандарт также имеет свои преимущества и недостатки. Из преимуществ можно отметить следующие:

  • использование параллельной передачи данных;

  • высокая скорость передачи;

Устройства 802.11n могут работать в одном из двух диапазонов 2.4 или 5.0 ГГц.

На физическом уровне (PHY) реализована усовершенствованная обработка сигнала и модуляции, добавлена возможность одновременной передачи сигнала через четыре антенны.

На сетевом уровне (MAC) реализовано более эффективное использование доступной пропускной способности. Вместе эти усовершенствования позволяют увеличить теоретическую скорость передачи данных до 600 Мбит/с – увеличение более чем в десять раз, по сравнению с 54 Мбит/с стандарта 802.11a/g (в настоящее время эти устройства уже считаются устаревшими).

В реальности, производительность беспроводной локальной сети зависит от многочисленных факторов, таких как среда передачи данных, частота радиоволн, размещение устройств и их конфигурация. При использовании устройств стандарта 802.11n, крайне важно понять, какие именно усовершенствования были реализованы в этом стандарте, на что они влияют, а также как они совмещаются и сосуществуют с сетями устаревшего стандарта 802.11a/b/g беспроводных сетей. Важно понять, какие именно дополнительные особенности стандарта 802.11n реализованы и поддерживаются в новых беспроводных устройствах.

Одним из основных моментов стандарта 802.11n является поддержка технологии MIMO (Multiple Input Multiple Output, Многоканальный вход/выход).
С помощью технологии MIMO реализована способность одновременного приема/передачи нескольких потоков данных через несколько антенн, вместо одной.

Стандарт 802.11n определяет различные антенные конфигурации «МхN», начиная с «1х1» до «4х4 » (самые распространенные на сегодняшний день это конфигурации «3х3» или «2х3»). Первое число (М) определяет количество передающих антенн, а второе число (N) определяет количество приемных антенн. Например, точка доступа с двумя передающими и тремя приемными антеннами является «2х3» MIMO -устройством. В дальнейшем я более подробно опишу этот стандарт

Базовый стандарт IEEE 802.11 разработан в 1997 году для организации беспроводной связи по радиоканалу на скорость до 1 МБит/с. в частотном диапазоне 2,4 ГГц. Опционально, то есть при наличии с обоих сторон специального оборудования, скорость можно было поднять до 2 Мбит/с.
Следом за ним, в 1999 году, была выпущена спецификация 802.11a для диапазона 5ГГц со максимально достижимой скоростью 54 Мбит/с.
После этого стандарты WiFi разделились по двум используемым диапазонам:

Диапазон 2,4 GHz:

Используемая полоса радиочастот 2400-2483,5 МГц. разделена на 14 каналов:

Канал Частота
1 2.412 ГГц
2 2.417 ГГц
3 2.422 ГГц
4 2.427 ГГц
5 2.432 ГГц
6 2.437 ГГц
7 2.442 ГГц
8 2.447 ГГц
9 2.452 ГГц
10 2.457 ГГц
11 2.462 ГГц
12 2.467 ГГц
13 2.472 ГГц
14 2.484 ГГц

802.11b - первая модифицикация базового стандарта Вай-Фай со скоростями 5,5 Мбит/с. и 11 МБит/с. Для его работы используются модуляции DBPSK и DQPSK, технология DSSS, кодирование Barker 11 и CCK.
802.11g - дальнейшая ступень развития предыдущей специфиции с максимальной скоростью передачи данных до 54 Мбит/с (реальная при этом 22-25 МБит/с). Имеет обратную совместимость с 802.11b и более широкую зону покрытия. Используются: технологии DSSS и ODFM, модулятиции DBPSK и DQPSK, кодирование arker 11 и CCK.
802.11n - на текущий момент самый современный и быстрый стандарт WiFi, имеющий максимальную зону покрытия в диапазоне 2,4 GHz, а так же используется и в спектре 5GHz. Обратно совместим с 802.11a/b/g. Поддерживает ширину канала 20 и 40 MHz. Используемые технологии ODFM и ODFM MIMO (многоканальный вход-выход Multiple Input Multiple Output). Максимальная скорость передачи данных - 600 Мбит/с (при этом реальная эффективность составляет в среднем не больше 50% от заявленного).

Диапазон 5 GHz:

Используемая полоса радиочастот 4800-5905 МГц. разделена на 38 каналов.

802.11a - первая модификация базовой спецификации IEEE 802.11 для радиочастотного диапазона 5GHz. Поддерживаемая скорость - до 54 Мбит\с. Используемая технология - OFDM, модуляции BPSK, QPSK, 16-QAM. 64-QAM. Используемое кодирование - Convoltion Coding.

802.11n - Универсальный стандарт WiFi, поддерживающий оба частотных диапазона. Может использовать ширину канала как 20, так и 40 MHz. Максимально достижимый скоростной предел - 600 МБит/с.

802.11ac - эта спецификация сейчас активно используется на двухдиапазонных WiFi роутерах. По сравнению с предшественником имеет лучшую зону покрытия и значительно экономнее в плане электропитания. Скорость передачи данных - до 6,77 Гбит/с при условии, что роутер имеет 8 антенн.
802.11ad - самый современный на сегодня стандарт Вай-Фай, имеющий дополнительный диапазон 60 ГГц .. Имеет второе название - WiGig (Wireless Gigabit). Теоретически достижимая скорость передачи данных - до 7 Гбит/с.

802.11n — режим передачи данных, реальная скорость примерно в четыре раза выше чем у 802.11g (54 Мбит/с). Но это имеется ввиду если устройство которое отправляет и которое принимает — работают в режиме 802.11n.

Устройства 802.11n работают в диапазоне частот 2.4 — 2.5 или 5 ГГц. Обычно частота указывается в документации к устройству, либо на упаковке. Радиус действия — 100 метров (может отражаться на скорости).

IEEE 802.11n — быстрый режим работы вай-фай, быстрее только 802.11ас (это вообще нереально крутой стандарт). Совместимость 802.11n с более старыми 802.11a/b/g возможна при использовании одной и той же частоты и канала.

Вы можете думать что я странный, но вот я не люблю Wi-Fi — не знаю почему, но мне как-то постоянно кажется что это не так стабильно как провода (витая пара). Может потому что у меня были только USB-адаптеры. В будущем хочу взять себе Wi-Fi PCI-карту, надеюсь что там все стабильно уж)) Я уже молчу о том, что Wi-Fi USB без антенны и скорость из-за всяких стен будет снижаться.. Но сейчас у нас в квартире провода валяются, и я согласен — не очень то и удобно..))

Как я понимаю — 802.11n это неплохой стандарт, так как он включает уже в себя характеристики 802.11a/b/g.

Однако выясняется вот что — 802.11n не совместим с предыдущими стандартами. И как я понимаю, это основная причина, из-за чего до сих пор 802.11n не особо популярный стандарт, а ведь появился он в 2007 году. Вроде бы все таки совместимость есть — об этом написал ниже.

Некоторые характеристики других стандартов:


Стандартов есть много и некоторые из них очень интересны своим предназначением:

Смотрите, вот 802.11p — определяет тип устройств, которые в радиусе километра едут со скоростью не более 200 км.. представляете?)) Вот это технологии!!

802.11n и скорость роутера

Смотрите, может быть такая ситуация — вам нужно увеличить скорость в роутере. Что делать? Ваш роутер спокойно может поддерживать стандарт IEEE 802.11n. Нужно открыть настройки, и где-то там найти опцию применения этого стандарта, то есть чтобы устройство работало в этом режиме. Если у вас роутер ASUS, то настройка может иметь примерно такой вид:


По сути — главное это буква N. Если у вас фирма TP-Link, то настройка может иметь такой вид:


Это все для роутера. Я понимаю что информации мало — но хотя бы теперь вы знаете, что в роутере есть такая настройка, а вот как подключиться к роутеру.. лучше посмотреть в интернете, я признаюсь — в этом не силен. Знаю только что нужно открыть адрес.. что-то вроде 192.168.1.1, как-то так..

Если у вас ноутбук, он тоже может поддерживать стандарт IEEE 802.11n. И его полезно установить, если вы например создаете точку доступа из ноутбука (да, это возможно). Откройте диспетчер устройств, для этого зажмите кнопки Win + R и вставьте эту команду:


Потом найдите ваш Wi-Fi адаптер (может называться сетевой адаптер Broadcom 802.11n) — нажмите правой кнопкой и выберите Свойства:


Перейдите на вкладку Дополнительно и найдите пункт Режим 802.11n прямого соединения, выберите включить:

Настройка может называться иначе — Wireless Mode, Wireless Type, Wi-Fi Mode, Wi-Fi type. В общем нужно указать режим передачи данных. Но эффект в плане скорости, как я уже писал, будет при условии если оба устройства используют стандарт 802.11n.

Нашел вот такую важную информацию по поводу совместимости:


Про совместимость, а также много важной информации о стандартах 802.11 читайте здесь:

Там реально очень много ценной информации, советую все таки посмотреть.

AdHoc Support 802.11n что это? Нужно включать или нет?

AdHoc Support 802.11n или AdHoc 11n- поддержка работы временной сети AdHoc, когда соединение возможно между разными устройствами. Используется для оперативной передачи данных. Не нашел информации о том, возможно ли организовать раздачу интернета в сети AdHoc (но все может быть).

Официально AdHoc ограничивает скорость до уровня стандарта 11g — 54 Мбит/с.

Интересный момент узнал — скорость Wi-Fi 802.11g, как я уже написал — 54 Мбит/с. Однако оказывается что 54, это суммарная цифра, то есть это прием и отправка. Так то, в одну сторону скорость — 27 Мбит/с. Но это еще не все — 27 Мбит/с это канальная скорость, которая возможна при идеальных условиях, их достичь нереально — 30-40% канала все равно составляют помехи в виде мобильных телефонов, всяких излучений, смарт-телеки с вай фаем и прочее. В итоге скорость на деле может быть реально 18-20 Мбит/с, а то и меньше. Я не буду утверждать — но возможно что это касается и других стандартов.

Так нужно включать или нет? Получается что без надобности — не нужно. Также, если я правильно понимаю, то при включении будет создана новая локальная сеть и возможно все таки можно в ней организовать интернет. Иными словами, может быть.. что при помощи AdHoc можно создать точку доступа Wi-Fi. Только что посмотрел в интернете — вроде бы таки можно))

Просто я помню вот что.. как-то я купил себе Wi-Fi адаптер фирмы D-Link (кажется это была модель D-Link N150 DWA-123) и там не было поддержки создания точки доступа. Но вот чип, он был то ли китайский.. толи еще какой-то.. в общем я узнал, что на него можно установить специальные неофициальные драйвера, полу-кривые, и при помощи них можно создать точку доступа.. И вот эта точка доступа работала вроде бы при помощи AdHoc, к сожалению точно не помню — но работала более-менее сносно.

Настройки Ad Hoc в свойствах сетевой карты

На заметку — QoS это технология распределения трафика в плане приоритетов. Обеспечивает необходимый высокий уровень передачи пакетов для важных процессов/программ. Если простыми словами, то QoS позволяет задать высокий приоритет программам, где нужна мгновенная передача данных — онлайн игры, VoIP-телефония, стрим, потоковое вещание и подобное, наверно к Скайпу и Вайберу тоже относится.

802.11 Preamble Long and Short — что это за настройка?

Да уж, эти настройки — целая наука. Часть кадра, которая передается модулем 802.11, называется преамбулой. Может быть длинная (Long) и короткая (Short) преамбула и видимо это указывается в настройке 802.11 Preamble (или Preamble Type). Длинная преамбула использует 128-битное поле синхронизации, короткая — 56-битное.

Устройства 802.11, работающие на частоте 2.4 ГГц обязаны при приеме и передаче поддерживать длинные преамбулы. Устройства 802.11g должны уметь работать с длинными и короткими преамбулами. В устройствах 802.11b работа коротких преамбул опциональна.

Значения в настройке 802.11 Preamble могут быть Long, Short, Mixed mode (смешанный режим), Green field (режим зеленого поля), Legacy mode (унаследованный режим). Скажу сразу — лучше не трогать эти настройки без необходимости и оставить значение по умолчанию либо при наличии выбрать Auto (или Default).

Что означают режимы Long и Short — мы уже выше выяснили. Теперь коротко о других режимах:

  1. Legacy mode . Режим обмена данными между станциями с одной антенной.
  2. Mixed mode . Режим передачи данных между системами MIMO (быстро, но медленнее чем Green field), так и между обычными станциями (медленно, так как не поддерживают высокие скорости). Система MIMO определяет пакет в зависимости от приемника.
  3. Green field . Передача возможна между многоантенными устройствами. Когда происходит передача MIMO-системой, обычные станции ожидают освобождения канала, чтобы исключить конфликты. В этом режиме прием данных от устройств, работающих в вышеуказанных двух режимах — возможен, а вот передача им — нет. Это сделано чтобы в процессе передачи данных исключить одноантенные устройства, тем самым сохранив высокую скорость передачи.

Поддержка MIMO что это такое?

На заметку. MIMO (Multiple Input Multiple Output) — тип передачи данных, при котором методом пространственного кодирования сигнала увеличивается канал и передача данных осуществляется несколькими антеннами одновременно.

20.10.2018