Основные функции SCADA-систем. SCADA-системы. Назначение, функции, характеристики, способы построения Программирование скада систем

SCADA (диспетчерское управление и сбор данных) — это система, которая используется в различных производственных процессах. В энергетике, АСДУ системы используются на подстанциях, ГЭС, тепловых электростанциях, солнечных электростанциях, ветряных электростанциях и т. д. Таким образом, диспетчеры могут следить за различными параметрами в реальном времени (за нагрузкой, напряжением, за отказами и т. д.). Они также могут делать различные переключения операций на расстоянии.
Системы SCADA довольно разнообразны, но также они имеют много общего. Точное определение понятий довольно сложное, потому что эти системы разрабатывают много компаний из разных стран мира. Но как и в любой другой отрасли есть общие черты и сильное стремление унификации, стандартизации и глобализации, которая привела к многому общему как на аппаратном так и на программном уровне.

Системы SCADA могут содержать один или несколько уровней. Например, система с тремя уровнями, содержит на своём первом уровне, устройства для подключения датчиков и исполнительных механизмов. На втором уровне находятся связи с компьютерами, которые могут иметь некоторые параметры обработки и функции управления. На третьем уровне находятся рабочие станции оператора. Эти рабочие станции являются также интерфейсом HMI (человек-машина). Такую систему можно увидеть на следующем рисунке:

Как вы можете видеть, это очень сложная система. Эти три уровня распределены следующим образом:

В нижней части фото вы можете увидеть различные типы датчиков, контроллеров, модемов и т. д. которые установлены на подстанции.

Затем вы можете увидеть уровень общения. Это может быть либо посредством прямого подключения последовательных каналов ввода/вывода или удаленно через Ethernet. Последовательные интерфейсы включают RS 232 и RS 485 с использованием провода или соединения с помощью волокна. Обслуживание локальной сети (LAN) или глобальной сети (WAN) предоставляется в стандартном стеке протокола TCP/IP.

Вверху вы можете увидеть рабочие станции оператора или ЧМИ. Все данные от подстанции хранится там. Оттуда, оператор может установить разные уровни защиты и регуляторов, может сделать различные коммутационные операции и т. д.

На приведенном выше рисунке вы можете увидеть, как диспетчеры видят подстанцию на своем экране. Как вы можете видеть, отсюда очень легко следить за всей подстанцией и всего одним щелчком мыши, можно выполнить операции переключения. Каждая компания, которая строит системы SCADA, имеет различную визуализацию, но концепция у всех одинаковая.

На этом экране могут быть визуализированы также:

Работа с мнемосхемами. После открытия нужной мнемосхемы, у оператора есть доступ к следующим командам: пульт дистанционного управления, выдачу команд на выбранных логических контроллерах, изменение параметров логических контроллеров, настройка времени и т. д. Мнемосхема отображает состояние всех технологических процессов и устройств, значения напряжения, активной и реактивной мощности, силу тока, состояния контроллера в локальной сети и т. д.

Окно тревоги — это всплывающее окно, в котором записаны события, которые пришли от устройств (активация защиты, автоматика, пересечения границ контролируемых переменных и т. д.) и описание всех основных действий оператора.

Отображается дополнительная информация о выбранном объекте.

Импорт новой конфигурации (добавление новых пользователей в систему, изменение существующих мнемосхем, добавление новых диаграмм и т. д.)

Подготовка отчетов – вы можете получить данные за определенный период времени.

В зависимости от потребностей пользователя, могут быть добавлены или удалены различные функции.

В заключение можно сказать, что SCADA-системы широко используются в современных системах питания, и они будут продолжать совершенствоваться и интегрировать по всему миру.

Они имеют много преимуществ, так как они работают в режиме реального времени сигнализируя о неисправности, выполняют мониторинг всех параметров в реальном времени, выполняют сбор данных от данной подстанции для дальнейшего анализа, выполняют удаленные коммутационные операции без риска для обслуживающего персонала, могут сократить общие затраты и т. д.

Термин SCADA-система используют для обозначения программно-аппаратного комплекса сбора данных (телемеханического комплекса).

К основным задачам, решаемым SCADA-системами, относятся:

  • Обмен данными в реальном времени с УСО (устройством связи с контролируемым объектом). Этим устройством может быть как промышленный контроллер, так и плата ввода/вывода.
  • Обработка информации в реальном времени.
  • Отображение информации на экране монитора в понятной для человека форме (HMI сокр. от англ. Human Machine Interface — человеко-машинный интерфейс).
  • Ведение базы данных реального времени с технологической информацией.
  • Аварийная сигнализация и управление тревожными сообщениями.
  • Подготовка и генерирование отчетов о ходе технологического процесса.
  • Архивирование технологической информации (сбор истории).

Обеспечение связи с внешними приложениями (СУБД, электронными таблицами, текстовыми процессорами и т.д.). В системе управления предприятием такими приложениями чаще всего являются приложения, относимые к уровню MES.

Иногда SCADA-системы комплектуются дополнительным ПО для программирования промышленных контроллеров. Такие SCADA-системы называются интегрированными, и к ним добавляют термин SoftLogiс.

Это была сухая формулировка, взятая из энциклопедии. На самом деле системы такого класса имеют четкое предназначение - они предоставляют возможность осуществлять мониторинг и диспетчерский контроль множества удаленных объектов (от 1 до 10000 пунктов контроля, иногда на расстоянии в тысячи километров друг от друга) или одного территориально распределенного объекта.

Классическими примерами являются:

  • Нефтепроводы;
  • Газопроводы;
  • Водопроводы;
  • Удалённые электрораспределительные подстанции;
  • Водозаборы;
  • Дизель-генераторные пункты и т.д.

Основная задача SCADA - это сбор информации о множестве удаленных объектов, поступающей с пунктов контроля, и отображение этой информации в едином диспетчерском центре. Кроме этого, SCADA должна обеспечивать долгосрочное архивирование полученных данных. При этом диспетчер зачастую имеет возможность не только пассивно наблюдать за объектом, но и ограниченно им управлять, реагируя на различные ситуации.

Общая структура SCADA

Работа SCADA - это непрерывный процесс сбора информации реального времени с удаленных точек (объектов) для обработки, анализа и возможного управления.

Требование обработки реального времени обусловлено необходимостью оперативной доставки (выдачи) всех сообщений и данных на центральный интерфейс оператора (диспетчера). В то же время понятие реального времени отличается для различных SCADA-систем.

Все современные SCADA-системы включают три основных структурных компонента (см. рисунок ниже):

Remote Terminal Unit (RTU) удаленный терминал, подключающийся непосредственно к контролируемому объекту и осуществляющий обработку задачи (управление) в режиме реального времени. Спектр воплощений RTU широк: от примитивных датчиков, осуществляющих съем информации с объекта, до специализированных многопроцессорных отказоустойчивых вычислительных комплексов, осуществляющих обработку информации и управление в режиме жесткого реального времени. Конкретная его реализация определяется спецификой применения. Использование устройств низкоуровневой обработки информации позволяет снизить требования к пропускной способности каналов связи с центральным диспетчерским пунктом.

Master Terminal Unit (MTU), Master Station (MS) диспетчерский пункт управления (главный терминал); осуществляет обработку данных и управление высокого уровня, как правило, в режиме мягкого (квази-) реального времени. Одна из основных функций - обеспечение человеко-машинного интерфейса (между человеком-оператором и системой). В зависимости от конкретной системы MTU может быть реализован в самом разнообразном виде: от одиночного компьютера с дополнительными устройствами подключения к каналам связи до больших вычислительных систем (мэйнфреймов) и/или объединенных в локальную сеть рабочих станций и серверов. Как правило, и при построении MTU используются различные методы повышения надежности и безопасности работы системы. Устройство MTU часто называют SCADA-сервером.

Communication System (CS) коммуникационная система (каналы связи) между RTU и MTU. Она необходима для передачи данных с удаленных точек (RTU) на центральный интерфейс диспетчера и передачи сигналов управления обратно с MTU на RTU. В качестве коммуникационной системы можно использовать следующие каналы передачи данных:

  • Выделенные линии - собственные или арендованные; медный кабель или оптоволокно;
  • Частные радиосети;
  • Аналоговые телефонные линии;
  • Цифровые ISDN сети;
  • Сотовые сети GSM (GPRS).

С целью дублирования линий связи устройства могут подключаться к нескольким сетям, например к выделенной линии и резервному радиоканалу.

Особенности SCADA как процесса управления

Ниже перечисленные некоторые характерные особенности процесса управления в современных диспетчерских системах:

  • В системах SCADA обязательно наличие человека (оператора, диспетчера);
  • Любое неправильное воздействие может привести к отказу (потере) объекта управления или даже катастрофическим последствиям;
  • Диспетчер несет, как правило, общую ответственность за управление системой, которая, при нормальных условиях, только изредка требует подстройки параметров для достижения оптимального функционирования;
  • Большую часть времени диспетчер пассивно наблюдает за отображаемой информацией. Активное участие диспетчера в процессе управления происходит нечасто, обычно в случае наступления критических событий - отказов, аварийных и нештатных ситуаций и пр.;
  • Действия оператора в критических ситуациях могут быть жестко ограничены по времени (несколькими минутами или даже секундами.

Прогресс не стоит на месте. На предприятиях работают станки и агрегаты, которые требуют постоянного контроля и своевременную реакцию на случившуюся аварию. Если вы хотите мониторить текущие показания и графики, работу ваших агрегатов или следить за грядками в теплице на персональном компьютере или планшете, то для этого нужно установить специальное ПО (SCADA система) и произвести несложные настройки. На сегодняшний день рынок IT-технологий предлагает программы SCADA систем.

Из этой статьи вы узнаете:

Всем привет! Уважаемые дамы и господа, пользователи сети интернет. С вами Гридин Семён. И я в этой статье хочу рассказать вам об интересной программе. Я когда только начинал заниматься программированием SCADA систем, испытывал трудности в настройке. Мне многое было не понятно, я долго разбирался в терминах и понятиях. Ну впрочем, как и с любым новым делом.

Для чего нужна программа SCADA?

Итак, вернёмся к нашей теме. SCADA (расшифровка: Supervisory Control And Data Acquisition) — диспетчерское управление и сбор данных, программный пакет, предназначенный для сбора информации с различных физических датчиков в реальном времени, для обработки архивируемых параметров и отображения данных на экране монитора, телефона или планшета.

Система состоит из двух частей: программной и аппаратной. Простейшая структура реализации системы изображена на иллюстрации ниже. Если хотите сразу практиковаться то для этого .

Итак, автоматизация системы начинается с нижнего уровня. Это когда осуществляется опрос различных датчиков логическими или модулями ввода-вывода.

Далее организовывается связующее звено — это утилита OPC-сервер. Что она делает? Программа опрашивает каждый модуль и извлекает данные из регистров. Из курса микроэлектроники, регистр — это ячейка памяти, которая хранит в себе информацию.

Затем SCADA начинает спрашивать ОРС-сервер «Эй, а у тебя есть что-нибудь из данных, давай сюда на обработку». Следовательно программа диспетчеризации принимает информацию и отображает на экране визуализации.

На самом деле ничего сложного нет. Со временем сможете разобраться. Итак, какими же программами пользуюсь я?

Master SCADA

Программный пакет фирмы INSAT. Достаточно мощный и гибкий инструмент для диспетчеризации промышленных объектов.

Что мне понравилось в этом продукте:

  • Все операции с программами и связями совершаются в единой среде разработки.
  • Очень много различных библиотек изображений и функциональных блоков.
  • Гибкость программирования визуализации мнемосхемы.
  • Большой функционал графиков, отчётов, сообщений, архивов.

Из минусов, по моему мнению, есть только один и категорически важный:

Интерфейс громоздкий и усложнённый, бывает трудно разобраться, где что находится. В настройках легко заблудиться, они раскиданы по всем вкладкам меню.

Simple-SCADA

Простейший инструмент для разработки SCADA-систем под различное оборудование,

  • В этом программном продукте красивый и простой интерфейс. Действительно Simple (по англ. просто);
  • Пакет разбит на несколько отдельных подпрограмм, каждая из которых выполняет свою функцию: редактирование, мониторинг, настройки, соединение с ОРС-серверами;
  • Интерфейс интуитивно понятный, единственная сложность заключается в написании скриптов и функций для SCADA систем;
  • Что самое приятное, продукт по цене не кусается.

Совсем недавно вышла новая версия программы Simple-SCADA 2.0. Сам ей пока не пользовался, но судя по скриншотам рабочих окон на сайте для серьёзных и сложных проектов можно применить.


SimpLight

Эта система между MasterSCADA и Simple-SCADA по моему субъективному мнению. Немного громоздкая, так же поделена на несколько подпрограмм, выполняющие свои конкретные задачи.

  • Интерфейс и рабочие окна приятны на вид;
  • Миллион удобных настроек;
  • Цена не заоблачная;

По сути я перечислил всего три пакета из многих других. Так как их достаточно для решения задач по автоматике в нашем регионе. Есть ещё такие гиганты, как Trace Mode, Iridium mobile, НПФ Круг. А есть варианты для дома с . О них пускай пишут другие. Я напишу поподробнее об этих трёх программа в следующих статьях, обучаясь сам и обучая других.

На этом у меня всё. Если есть вопросы, задавайте в комментариях, обязательно отвечу. Подписывайтесь на блог, расскажите друзьям. До встречи в следующих статьях. Пока, пока.

С уважением и наилучшими пожеланиями, Гридин Семён

Большинство систем автоматизации функционирует с участием человека. Взаимодействие между человеком и системой автоматизации называют человеко-машинным интерфейсом (ЧМИ), а в мире это звучит как - Human Machine Interface , сокращенно HMI. На сегодняшний день, самым распространенным программным комплексом, реализующим человеко-машинный интерфейс, являются SCADA системы. SCADA – это акроним от выражения Supervisory Control And Data Acquisition , что дословно переводится на русский язык, как: диспетчерское управление и сбор данных. Но стоит отметить, что существующие SCADA системы помимо сбора данных и диспетчерского управления реализуют множество различных функций, далеко выходящих за рамки упомянутого выше определения.

Функции SCADA систем подразделяются на несколько групп:

  • Адаптация SCADA системы под решение стоящих задач;
  • Диспетчеризация объектов управления;
  • Автоматизация процесса управления;
  • Архивация истории протекающих процессов;
  • Работа с функциями безопасности;
  • Работа с общесистемными функциями.

Несмотря на наличие множества функций, которые выполняют SCADA системы, основным отличием SCADA от других систем является наличие пользовательского интерфейса. Если изъять пользовательский интерфейс, то все указанные выше функции совпадут с функциями, которые выполняют средства программирования промышленных контроллеров (ПЛК), и управление станет полностью автоматизированным в противовес диспетчерскому.

От качества принимаемых диспетчером решений зависит не только качество производимой продукции, но порой и человеческая жизнь. Именно поэтому комфортабельность рабочего места, простота и интуитивная понятность рабочего интерфейса, создание подсказок и блокирование допускаемых оператором ошибок – вот наиболее приоритетные свойства SCADA систем, дальнейшее развитие которых осуществляется в сторону большей эргономичности и улучшения экспертных подсистем.

Порой в комплектацию SCADA системы входят средства программирования контроллеров, однако подобные решения вызваны скорее коммерческим интересом, нежели напрямую связаны с основными функциями SCADA систем.

Основной функцией SCADA системы по праву считается создание человеко-машинного интерфейса (HMI ), т.е. SCADA система выступает сразу в двух ролях – в роли HMI и в роли инструмента его создания. Скорость проводимых разработок в значительной степени влияет на конкурентоспособность фирмы (которой в большинстве случаев является системный интегратор), внедряющей системы промышленной автоматизации (АСУТП), именно поэтому скорость разработки выступает в роли основного показателя с позиции системного интегратора качества SCADA системы. Процесс разработки SCADA систем включает в себя следующие операции:

  • Разработка графического интерфейса (графики, всплывающие окна, мнемосхемы, таблицы, элементы ввода команд оператором и прочее);
  • Процесс программирования и отладки алгоритмов работы системы промышленной автоматизации АСУТП. В большинстве SCADA систем отладку можно выполнить двумя вариантами – в режиме эмуляции оборудования или при подключенном оборудовании;
  • Произведение настройки систем промышленной коммуникации (модемов, промышленных сетей и коммуникационных контроллеров);
  • Процесс создания баз данных с дальнейшим подключением к ним SCADA системы.

Если рассматривать SCADA систему с точки зрения диспетчерского управления, то ей доступно выполнение следующих задач:

  • Осуществление взаимодействия с оператором (представление слуховой и визуальной информации, трансляция системе команд оператора);
  • Оказание помощи оператору в процессе выработки необходимого решения (выполнение функций экспертной системы);
  • Автоматическое сигнализирование об аварии и случившихся критических ситуациях (подсистема алармов);
  • Вывод на пульт оператора информации о состоянии процесса;
  • Ведение журнала событий;
  • Поиск и извлечение архивной информации, и предоставление её оператору в удобном для него варианте;
  • Создание отчетов (графики смены операторов, таблицы температур, перечень необходимых действий оператора в определенной ситуации и прочее);
  • Учет наработки технологического оборудования.

Большая часть имеющихся задач по автоматизации управления выполняется зачастую при помощи промышленного контроллера (ПЛК), но частично выполнение задач может быть возложено и на SCADA систему. Помимо всего прочего, многие небольшие системы управления могут вообще не иметь промышленного контроллера (ПЛК), поэтому промышленный компьютер, с установленной на него SCADA становится единственным средством управления процессом. В сфере автоматического управления (АСУТП) SCADA система, как правило, выполняет следующие функции:

  • ПИД регулирование;
  • Отслеживание последовательности выполнения операций в автоматизированной системе;
  • Автоматическая перенастройка алгоритмов работы АСУТП к изменившимся условиям протекания управляемого процесса;
  • Реализация автоматической блокировки исполнительных устройств во время выполнения ранее заданных алгоритмов.

Если знать предысторию объекта (процесса) управления, то можно значительно улучшить поведение системы в будущем, проанализировать и выявить причины возникновения ситуаций, связанных с безопасностью системы или появлением брака продукции, определить ошибки, сделанные оператором. Чтобы создать историю SCADA системой выполняются следующие операции:

  • Сбор различных входных данных и произведение их обработки (цифровая фильтрация, нормализация, интерполяция, масштабирование, сжатие и прочее);
  • Архивирование данных (действия оператора, файлы конфигурации, собранные и обработанные данные, электронные формы, отчеты, события, графики, алармы и т.д.);
  • Управление различными базами данных (архивные базы данных и базы данных реального времени).

После того, как SCADA системы стали применять в системах удаленного доступа посредством сети интернет, то резко повысилась уязвимость SCADA к противоправным действиям со стороны злоумышленников. Относиться с пренебрежением к данной проблеме нет возможности, поскольку это может привести к серьезным сбоям в функционировании различных промышленных и инфраструктурных объектов. Что чревато человеческими жизнями и столь немалым экономическим ущербом. В SCADA системах применяются следующие способы для повышения уровня безопасности их работы:

  • Осуществление разграничения уровней доступа к системе между различными категориями пользователей (оператор, программист, технолог и директор должны иметь различные уровни доступа к имеющейся в системе информации и к модифицированию настроек системы);
  • Организация защиты информации (шифрование данных, обеспечение максимальной надежности от уязвимостей протоколов передачи информации);
  • Проведение мер по обеспечению повышения безопасности оператора путем его отдаления от опасного процесса, которым он управляет (дистанционное управление или remote control ). Что важно, применение дистанционного управления является стандартным требованием Ростехнадзора и осуществляется посредством проводной сети, сети интернет, через радиоканал (радио или GSM -модем) и другие виды связи;
  • Применение специальных мер и методов защиты информации от атак злоумышленников;
  • Использование файерволов и прочих сетевых защит.

Учитывая то, что SCADA система, как правило, единственная программа, управляющая системой промышленной автоматизации (АСУТП), то при определенных условиях не неё может быть возложено выполнение некоторых общесистемных функций, таких как:

  • Осуществление необходимого взаимодействия между различными SCADA системами, или между SCADA системой и иными сторонними программами (базы данных, офисные приложения, программы для математических расчетов и другие);
  • Проведение диагностики аппаратуры, алгоритмов программ и каналов связи.

Основные тенденции в процессе развития программного обеспечения, используемого в средствах промышленной автоматизации – упрощение и облегчение процесса программирования, обеспечение полной открытости инструментальных средств. Конечная цель – осуществление потребителем возможности построения системы промышленной автоматизации, удовлетворяющей всем необходимым требованиям в максимально сжатые сроки.

После долгой неопределенности витавшей в средствах программирования SCADA систем и промышленных контроллеров (ПЛК) был принят общепризнанный стандарт на языки программирования МЭК 61131-3 (IEC 61131-3) и созданы на его основе инструментальные средства программирования, поддерживаемые компаниями, которые специализируются на создании программного обеспечения для АСУТП.

Значительный вклад в вопрос открытости систем автоматизации был внесен стандартом ОРС (OLE for Process Control ), что переводится как OLE для управления процессом, обеспечивший наличие широчайшего выбора аппаратного обеспечения, используемого системными интеграторами. Разработчики контроллерного оборудования получили, в свою очередь, от внедрения стандарта OPC расширение рынков сбыта. Стоит отметить, что данное аппаратное обеспечение совместимо с любыми стандартными SCADA системами.

Диспетчерское управление и сбор данных (SCADA Supervisory Control And Data Acquisition) является основным и в настоящее время остается наиболее перспективным методом автоматизированного управления сложными динамическими системами (процессами) в жизненно важных и критичных с точки зрения безопасности и надежности областях. Именно на принципах диспетчерского управления строятся крупные автоматизированные системы в промышленности и энергетике, на транспорте, в космической и военной областях, в различных государственных структурах.

За последние 10-15 лет за рубежом резко возрос интерес к проблемам построения высокоэффективных и высоконадежных систем диспетчерского управления и сбора данных. С одной стороны, это связано со значительным прогрессом в области вычислительной техники, программного обеспечения и телекоммуникаций, что увеличивает возможности и расширяет сферу применения автоматизированных систем. С другой стороны, развитие информационных технологий, повышение степени автоматизации и перераспределение функций между человеком и аппаратурой обострило проблему взаимодействия человека-оператора с системой управления. Расследование и анализ большинства аварий и происшествий в авиации, наземном и водном транспорте, промышленности и энергетике, часть из которых привела к катастрофическим последствиям, показали, что, если в 60-х годах ошибка человека являлась первоначальной причиной лишь 20% инцидентов (80%, соответственно, за технологическими неисправностями и отказами), то в 90-х годах доля человеческого фактора возросла до 80%, причем, в связи с постоянным совершенствованием технологий и повышением надежности электронного оборудования и машин, доля эта может возрасти.

Основной причиной таких тенденций является старый традиционный подход к построению сложных автоматизированных систем управления, который применяется часто и в настоящее время: ориентация в первую очередь на применение новейших технических (технологических) достижений, стремление повысить степень автоматизации и функциональные возможности системы и, в то же время, недооценка необходимости построения эффективного человеко-машинного интерфейса (HMI Human-Machine Interface), т.е. интерфейса, ориентированного на пользователя (оператора). Не случайно именно на последние 15 лет, т.е. период появления мощных, компактных и недорогих вычислительных средств, пришелся пик исследований в США по проблемам человеческого фактора в системах управления, в том числе по оптимизации архитектуры и HMI-интерфейса систем диспетчерского управления и сбора данных.

Изучение материалов по проблемам построения эффективных и надежных систем диспетчерского управления показало необходимость применения нового подхода при разработке таких систем: human-centered design (или top-down, сверху-вниз), т.е. ориентация в первую очередь на человека-оператора (диспетчера) и его задачи, вместо традиционного и повсеместно применявшегося hardware-centered (или bottom-up, снизу-вверх), в котором при построении системы основное внимание уделялось выбору и разработке технических средств (оборудования и программного обеспечения). Применение нового подхода в реальных космических и авиационных разработках и сравнительные испытания систем в Национальном управлении по аэронавтике и исследованию космического пространства (NASA), США, подтвердили его эффективность, позволив увеличить производительность операторов, на порядок уменьшить процедурные ошибки и свести к нулю критические (некорректируемые) ошибки операторов.

Определение и общая структура SCADA

SCADA процесс сбора информации реального времени с удаленных точек (объектов) для обработки, анализа и возможного управления удаленными объектами. Требование обработки реального времени обусловлено необходимостью доставки (выдачи) всех необходимых событий (сообщений) и данных на центральный интерфейс оператора (диспетчера). В то же время понятие реального времени отличается для различных SCADA-систем.

Прообразом современных систем SCADA на ранних стадиях развития автоматизированных систем управления являлись системы телеметрии и сигнализации.

Все современные SCADA-системы включают три основных структурных компонента:

Remote Terminal Unit (RTU) удаленный терминал, осуществляющий обработку задачи (управление) в режиме реального времени. Спектр его воплощений широк от примитивных датчиков, осуществляющих съем информации с объекта, до специализированных многопроцессорных отказоустойчивых вычислительных комплексов, осуществляющих обработку информации и управление в режиме жесткого реального времени. Конкретная его реализация определяется конкретным применением. Использование устройств низкоуровневой обработки информации позволяет снизить требования к пропускной способности каналов связи с центральным диспетчерским пунктом.

Master Terminal Unit (MTU), Master Station (MS) диспетчерский пункт управления (главный терминал); осуществляет обработку данных и управление высокого уровня, как правило, в режиме мягкого (квази-) реального времени; одна из основных функций обеспечение интерфейса между человеком-оператором и системой (HMI, MMI). В зависимости от конкретной системы MTU может быть реализован в самом разнообразном виде от одиночного компьютера с дополнительными устройствами подключения к каналам связи до больших вычислительных систем (мэйнфреймов) и/или объединенных в локальную сеть рабочих станций и серверов. Как правило, и при построении MTU используются различные методы повышения надежности и безопасности работы системы.

Communication System (CS) коммуникационная система (каналы связи), необходима для передачи данных с удаленных точек (объектов, терминалов) на центральный интерфейс оператора-диспетчера и передачи сигналов управления на RTU (или удаленный объект в зависимости от конкретного исполнения системы).

Функциональная структура SCADA

Существует два типа управления удаленными объектами в SCADA:

  • автоматическое,
  • инициируемое оператором системы.

Выделяют четыре основных функциональных компонента систем диспетчерского управления и сбора данных:

  • человек-оператор,
  • компьютер взаимодействия с человеком,
  • компьютер взаимодействия с задачей (объектом),
  • задача (объект управления).

Функци человека-оператора в системе диспетчерского управления, как набор вложенных циклов, в которых оператор:

  • планирует, какие следующие действия необходимо выполнить;
  • обучает (программирует) компьютерную систему на последующие действия;
  • отслеживает результаты (полу)автоматической работы системы;
  • вмешивается в процесс в случае критических событий, когда автоматика не может справиться, либо при необходимости подстройки (регулировки) параметров процесса;
  • обучается в процессе работы (получает опыт).

Данное представление SCADA явилось основой для разработки современных методологий построения эффективных диспетчерских систем.

Особенности SCADA как процесса управления

Особенности процесса управления в современных диспетчерских системах:

  • процесс SCADA применяется системах, в которых обязательно наличие человека (оператора, диспетчера);
  • процесс SCADA был разработан для систем, в которых любое неправильное воздействие может привести к отказу (потере) объекта управления или даже катастрофическим последствиям;
  • оператор несет, как правило, общую ответственность за управление системой, которая, при нормальных условиях, только изредка требует подстройки параметров для достижения оптимальной производительности;
  • активное участие оператора в процессе управления происходит нечасто и в непредсказуемые моменты времени, обычно в случае наступления критических событий (отказы, нештатные ситуации и пр.);
  • действия оператора в критических ситуациях могут быть жестко ограничены по времени (несколькими минутами или даже секундами).

Основные требования к диспетчерским системам управления

К SCADA-системам предъявляются следующие основные требования:

  • надежность системы (технологическая и функциональная);
  • безопасность управления;
  • точность обработки и представления данных;
  • простота расширения системы.

Требования безопасности и надежности управления в SCADA включают следующие:

  • никакой единичный отказ оборудования не должен вызвать выдачу ложного выходного воздействия (команды) на объект управления;
  • никакая единичная ошибка оператора не должна вызвать выдачу ложного выходного воздействия (команды) на объект управления;
  • все операции по управлению должны быть интуитивно-понятными и удобными для оператора (диспетчера).

Области применения SCADA-систем

Основными областями применения систем диспетчерского управления (по данным зарубежных источников), являются:

  • управление передачей и распределением электроэнергии;
  • промышленное производство;
  • производство электроэнергии;
  • водозабор, водоочистка и водораспределение;
  • добыча, транспортировка и распределение нефти и газа;
  • управление космическими объектами;
  • управление на транспорте (все виды транспорта: авиа, метро, железнодорожный, автомобильный, водный);
  • телекоммуникации;
  • военная область.

В настоящее время в развитых зарубежных странах наблюдается настоящий подъем по внедрению новых и модернизации существующих автоматизированных систем управления в различных отраслях экономики; в подавляющем большинстве случаев эти системы строятся по принципу диспетчерского управления и сбора данных. Характерно, что в индустриальной сфере (в обрабатывающей и добывающей промышленности, энергетике и др.) наиболее часто упоминаются именно модернизация существующих производств SCADA-системами нового поколения. Эффект от внедрения новой системы управления исчисляется, в зависимости от типа предприятия, от сотен тысяч до миллионов долларов в год; например, для одной средней тепловой станции он составляет, по подсчетам специалистов, от 200000 до 400000 долларов. Большое внимание уделяется модернизации производств, представляющих собой экологическую опасность для окружающей среды (химические и ядерные предприятия), а также играющих ключевую роль в жизнеобеспечении населенных пунктов (водопровод, канализация и пр.). С начала 90-х годов в США начались интенсивные исследования и разработки в области создания автоматизированных систем управления наземным (автомобильным) транспортом ATMS (Advanced Traffic Management System).

Тенденции развития технических средств систем диспетчерского управления

Общие тенденции

  • Прогресс в области информационных технологий обусловил развитие всех 3-х основных структурных компонентов систем диспетчерского управления и сбора данных RTU, MTU, CS, что позволило значительно увеличить их возможности; так, число контролируемых удаленных точек в современной SCADA-системе может достигать 100000.
  • Основная тенденция развития технических средств (аппаратного и программного обеспечения) SCADA миграция в сторону полностью открытых систем. Открытая архитектура позволяет независимо выбирать различные компоненты системы от различных производителей; в результате расширение функциональных возможностей, облегчение обслуживания и снижение стоимости SCADA-систем.

Удаленные терминалы (RTU)

  • Главная тенденция развития удаленных терминалов увеличение скорости обработки и повышение их интеллектуальных возможностей. Современные терминалы строятся на основе микропроцессорной техники, работают под управлением операционных систем реального времени, при необходимости объединяются в сеть, непосредственно или через сеть взаимодействуют с интеллектуальными электронными датчиками объекта управления и компьютерами верхнего уровня.
  • Конкретная реализация RTU зависит от области применения. Это могут быть специализированные (бортовые) компьютеры, в том числе мультипроцессорные системы, обычные микрокомпьютеры или персональные ЭВМ (РС); для индустриальных и транспортных систем существует два конкурирующих направления в технике RTU индустриальные (промышленные) PC и программируемые логические контроллеры (в русском переводе часто встречается термин промышленные контроллеры) PLC.

Индустриальные компьютеры представляют собой, как правило, программно совместимые с обычными коммерческими РС машины, но адаптированные для жестких условий эксплуатации буквально для установки на производстве, в цехах, газокомпрессорных станциях и т.д. Адаптация относится не только к конструктивному исполнению, но и к архитектуре и схемотехнике, так как изменения температуры окружающей среды приводят к дрейфу электрических параметров. В качестве устройств сопряжения с объектом управления данные системы комплектуются дополнительными платами (адаптерами) расширения, которых на рынке существует большое разнообразие от различных изготовителей (как, впрочем, и самих поставщиков промышленных РС). В качестве операционной системы в промышленных PC, работающих в роли удаленных терминалов, все чаще начинает применяться Windows NT, в том числе различные расширения реального времени, специально разработанные для этой операционной системы (подробнее см. ниже).

Промышленные контроллеры (PLC) представляют собой специализированные вычислительные устройства, предназначенные для управления процессами (объектами) в реальном времени. Промышленные контроллеры имеют вычислительное ядро и модули ввода-вывода, принимающие информацию (сигналы) с датчиков, переключателей, преобразователей, других устройств и контроллеров, и осуществляющие управление процессом или объектом выдачей управляющих сигналов на приводы, клапаны, переключатели и другие исполнительные устройства. Современные PLC часто объединяются в сеть (RS-485, Ethernet, различные типы индустриальных шин), а программные средства, разрабатываемые для них, позволяют в удобной для оператора форме программировать и управлять ими через компьютер, находящийся на верхнем уровне SCADA-системы диспетчерском пункте управления (MTU). Исследование рынка PLC показало, что наиболее развитой архитектурой, программным обеспечением и функциональными возможностями обладают контроллеры фирм Siemens, Fanuc Automation (General Electric), Allen-Bradley (Rockwell), Mitsubishi. Представляет интерес также продукция фирмы CONTROL MICROSYSTEMS промышленные контроллеры для систем мониторинга и управления нефте- и газопромыслами, трубопроводами, электрическими подстанциями, городским водоснабжением, очисткой сточных вод, контроля загрязнения окружающей среды.

Много материалов и исследований по промышленной автоматизации посвящено конкуренции двух направлений PC и PLC; каждый из авторов приводит большое количество доводов за и против по каждому направлению. Тем не менее, можно выделить основную тенденцию: там, где требуется повышенная надежность и управление в жестком реальном времени, применяются PLC. В первую очередь это касается применений в системах жизнеобеспечения (например, водоснабжение, электроснабжение), транспортных системах, энергетических и промышленных предприятиях, представляющих повышенную экологическую опасность. Примерами могут служить применение PLC семейства Simatic (Siemens) в управлении электропитанием монорельсовой дороги в Германии или применение контроллеров компании Allen-Bradley (Rockwell) для модернизации устаревшей диспетчерской системы аварийной вентиляции и кондиционирования на плутониевом заводе 4 в Лос-Аламосе. Аппаратные средства PLC позволяют эффективно строить отказоустойчивые системы для критических приложений на основе многократного резервирования. Индустриальные РС применяются преимущественно в менее критичных областях (например, в автомобильной промышленности, модернизация производства фирмой General Motors), хотя встречаются примеры и более ответственных применений (метро в Варшаве управление движением поездов). По оценкам экспертов, построение систем на основе PLC, как правило, является менее дорогостоящим вариантом по сравнению с индустриальными компьютерами.

Каналы связи (CS)

Каналы связи для современных диспетчерских систем отличаются большим разнообразием; выбор конкретного решения зависит от архитектуры системы, расстояния между диспетчерским пунктом (MTU) и RTU, числа контролируемых точек, требований по пропускной способности и надежности канала, наличия доступных коммерческих линий связи.

Тенденцией развития CS как структурного компонента SCADA-систем можно считать использование не только большого разнообразия выделенных каналов связи (ISDN, ATM и пр.), но также и корпоративных компьютерных сетей и специализированных индустриальных шин.

В современных промышленных, энергетических и транспортных системах большую популярность завоевали индустриальные шины специализированные быстродействующие каналы связи, позволяющие эффективно решать задачу надежности и помехоустойчивости соединений на разных иерархических уровнях автоматизации. Существует три основных категории индустриальных шин, характеризующие их назначение (место в системе) и сложность передаваемой информации: Sensor, Device, Field. Многие индустриальные шины охватывают две или даже все три категории.

Из всего многообразия индустриальных шин, применяющихся по всему миру (только по Германии их установлено в различных системах около 70 типов) следует выделить промышленный вариант Ethernet и PROFIBUS, наиболее популярные в настоящее время и, по-видимому, наиболее перспективные. Применение специализированных протоколов в промышленном Ethernet позволяет избежать свойственного этой шине недетерминизма (из-за метода доступа абонентов CSMA/CD), и в то же время использовать его преимущества как открытого интерфейса. Шина PROFIBUS в настоящее время является одной из наиболее перспективных для применения в промышленных и транспортных системах управления; она обеспечивает высокоскоростную (до 12 Мбод) помехоустойчивую передачу данных (кодовое расстояние = 4) на расстояние до 90 км. На основе этой шины построена, например, система автоматизированного управления движением поездов в варшавском метро.

Диспетчерские пункты управления (MTU)

Главной тенденцией развития MTU (диспетчерских пунктов управления) является переход большинства разработчиков SCADA-систем на архитектуру клиент-сервер, состоящую из 4-х функциональных компонентов.

1. User (Operator) Interface (интерфейс пользователя/оператора) исключительно важная составляющая систем SCADA. Для нее характерны а) стандартизация интерфейса пользователя вокруг нескольких платформ; б) все более возрастающее влияние Windows NT; в) использование стандартного графического интерфейса пользователя (GUI); г) технологии объектно-ориентированного программирования: DDE, OLE, Active X, OPC (OLE for Process Control), DCOM; д) стандартные средства разработки приложений, наиболее популярные среди которых, Visual Basic for Applications (VBA), Visual C++; е) появление коммерческих вариантов программного обеспечения класса SCADA/MMI для широкого спектра задач. Объектная независимость позволяет интерфейсу пользователя представлять виртуальные объекты, созданные другими системами. Результат расширение возможностей по оптимизации HMI-интерфейса.

2. Data Management (управление данными) отход от узкоспециализированных баз данных в сторону поддержки большинства корпоративных реляционных баз данных (Microsoft SQL, Oracle). Функции управления данными и генерации отчетов осуществляются стандартными средствами SQL, 4GL; эта независимость данных изолирует функции доступа и управления данными от целевых задач SCADA, что позволяет легко разрабатывать дополнительные приложения по анализу и управлению данными.

3. Networking & Services (сети и службы) переход к использованию стандартных сетевых технологий и протоколов. Службы сетевого управления, защиты и управления доступом, мониторинга транзакций, передачи почтовых сообщений, сканирования доступных ресурсов (процессов) могут выполняться независимо от кода целевой программы SCADA, разработанной другим вендором.

4. Real-Time Services (службы реального времени) освобождение MTU от нагрузки перечисленных выше компонентов дает возможность сконцентрироваться на требованиях производительности для задач реального и квази-реального времени. Данные службы представляют собой быстродействующие процессоры, которые управляют обменом информацией с RTU и SCADA-процессами, осуществляют управление резидентной частью базы данных, оповещение о событиях, выполняют действия по управлению системой, передачу информации о событиях на интерфейс пользователя (оператора).

Операционные системы

Несмотря на продолжающиеся споры среди специалистов по системам управления на тему что лучше UNIX или Windows NT? , рынок однозначно сделал выбор в пользу последней. Решающими для быстрого роста популярности Windows NT стала ее открытая архитектура и эффективные средства разработки приложений, что позволило многочисленным фирмам-разработчикам создавать программные продукты для решения широкого спектра задач.

Рост применения Windows NT в автоматизированных системах управления обусловлен в значительной степени появлением ряда программных продуктов, которые позволяют использовать ее в качестве платформы для создания ответственных приложений в системах реального времени, а также во встраиваемых конфигурациях. Наиболее известными расширениями реального времени для Windows NT являются продукты компаний VenturCom, Nematron, RadiSys.

Решения фирмы VenturCom стали стандартом де-факто для создания ответственных приложений жесткого реального времени на платформе Windows NT. При разработке интерфейса для приложений реального времени разработчики фирмы пошли по пути модификации модуля Windows NT слоя аппаратных абстракций (HAL Hardware Abstraction Layer), отвечающего за выработку высокоприоритетных системных прерываний, мешающих задаче осуществлять управление в жестком реальном времени. Программный продукт Component Integrator компании VenturCom является средством ускоренной разработки и внедрения приложений реального времени для Windows NT; он поставляется в виде интегрированного пакета, состоящего из инструментов для создания встраиваемых приложений (ECK Embedded Component Kit) и собственно расширений реального времени (RTX 4.1), позволяющих приложениям, создаваемым для работы под Windows NT, работать а режиме реального времени.

Компания RadiSys применила другой подход к разработке расширений реального времени: Windows NT загружается как низкоприоритетная задача под хорошо проверенной и известной вот уже лет 20 операционной системой реального времени iRMX. Все функции обработки и управления реального времени выполняются как высокоприоритетные задачи под iRMX, изолированные в памяти от приложений и драйверов Windows NT механизмом защиты процессора. Данный подход имеет то преимущество по сравнению с решением VenturCom, что задача реального времени не зависит от работы Windows NT: в случае сбоя или катастрофической системной ошибки в работе Windows NT управляющая задача реального времени будет продолжать работать. Это решение позволяет информировать основную задачу о проблемах, возникших в работе NT, и оставлять только за ней право продолжения работы или останова всей системы.

Следует отметить, что в SCADA-системах требование жесткого реального времени (т.е. способность отклика/обработки событий в четко определенные, гарантированные интервалы времени) относится, как правило, только к удаленным терминалам; в диспетчерских пунктах управления (MTU) происходит обработка/управление событиями (процессами, объектами) в режиме мягкого (квази-) реального времени.

Прикладное программное обеспечение

Ориентация на открытые архитектуры при построении систем диспетчерского управления и сбора данных позволяет разработчикам этих систем сконцентрироваться непосредственно на целевой задаче SCADA сбор и обработка данных, мониторинг, анализ событий, управление, реализация HMI-интерфейса.

Как правило, целевое программное обеспечение для автоматизированных систем управления разрабатывается под конкретное применение самими поставщиками этих систем.