Блок регулировки напряжения генератора. Генераторная установка. Что это такое

Ремонтом ежедневно занимаются тысячи людей во всем мире. При его выполнении каждый начинает задумываться о тех тонкостях, которые сопутствуют ремонту: в какой цветовой гамме выбрать обои, как подобрать шторы в цвет обоев, правильно расставить мебель для получения единого стиля помещения. Но о самом главном редко кто задумывается, а этим главным является замена электропроводки в квартире. Ведь если со старой проводкой что-то произойдет, то квартира потеряет всю свою привлекательность и станет совершенно не пригодной для жизни.

Как заменить проводку в квартире знает любой электрик, но это под силу любому обычному гражданину, однако при выполнении данного вида работ ему следует выбирать качественные материалы, чтобы получить безопасную электрическую сеть в помещении.

Первое действие, которое необходимо выполнить, спланировать будущую проводку . На данном этапе нужно определить, в каких именно местах будут проложены провода. Также на данном этапе можно вносить любые коррективы в существующую сеть, что позволит максимально комфортно в соответствии с потребностями хозяев расположить светильники и .

12.12.2019

Узкоотраслевые приборы трикотажной подотрасли и их техническое обслуживание

Для определения растяжимости чулочно-носочных изделий применяется прибор, схема которого показана на рис. 1.

В основе конструкции прибора лежит принцип с автоматическим уравновешиванием коромысла упругими силами испытываемого изделия, действующими с постоянной скоростью.

Весовое коромысло представляет собой равноплечий круглый стальной стержень 6, имеющий ось вращения 7. На его правый конец крепятся с помощью байонетного замка лапки или раздвижная форма следа 9, на которые одевается изделие. На левом плече шарнирно укреплена подвеска для грузов 4, а его конец заканчивается стрелкой 5, показывающей равновесное состояние коромысла. До начала испытаний изделия коромысло приводят в равновесие подвижной гирей 8.

Рис. 1. Схема прибора для измерения растяжимости чулочно-носочных изделий: 1 —направляющая, 2 — левая линейка, 3 — движок, 4 — подвеска для грузов; 5, 10 — стрелки, 6 — стержень, 7 — ось вращения, 8 — гиря, 9 — форма следа, 11— растягивающий рычаг,

12— каретка, 13 — ходовой винт, 14 — правая линейка; 15, 16 — винтовые шестерни, 17 — червячный редуктор, 18 — соединительная муфта, 19 — электродвигатель


Для перемещения каретки 12 с растягивающим рычагом 11 служит ходовой винт 13, на нижнем конце которого закреплена винтовая шестерня 15; через нее вращательное движение передается ходовому винту. Перемена направления вращения винта зависит от изменения вращения 19, который при помощи соединительной муфты 18 связан с червячным редуктором 17. На вал редуктора посажена винтовая шестерня 16, непосредственно сообщающая движение шестерне 15.

11.12.2019

В пневматических исполнительных механизмах перестановочное усилие создается за счет воздействия сжатым воздухом на мембрану, или поршень. Соответственно различают механизмы мембранные, поршневые и сильфонные. Они предназначены для установки и перемещения затвора регулирующего органа в соответствии с пневматическим командным сигналом. Полный рабочий ход выходного элемента механизмов осуществляется при изменении командного сигнала от 0,02 МПа (0,2 кг/см 2) до 0,1 МПа (1 кг/см 2). Предельное давление сжатого воздуха в рабочей полости — 0,25 МПа (2,5 кг/см 2).

У мембранных прямоходных механизмов шток совершает возвратно-поступательное движение. В зависимости от направления движения выходного элемента они подразделяются на механизмы прямого действия (при повышении давления мембраны) и обратного действия.

Рис. 1. Конструкция мембранного исполнительного механизма прямого действия: 1, 3 — крышки, 2—мембрана, 4 — опорный диск, 5 — кронштейн, 6 — пружина, 7 — шток, 8 — опорное кольцо, 9 — регулировочная гайка, 10 — соединительная гайка


Основными конструктивными элементами мембранного исполнительного механизма являются мембранная пневматическая камера с кронштейном и подвижная часть.

Мембранная пневматическая камера механизма прямого действия (рис. 1) состоит из крышек 3 и 1 и мембраны 2. Крышка 3 и мембрана 2 образуют герметическую рабочую полость, крышка 1 прикреплена к кронштейну 5. К подвижной части относятся опорный диск 4, к которому прикреплена мембрана 2, шток 7 с соединительной гайкой 10 и пружина 6. Пружина одним концом упирается в опорный диск 4, а другим через опорное кольцо 8 в регулировочную гайку 9, служащую для изменения начального натяжения пружины и направления движения штока.

08.12.2019

На сегодняшний день существует несколько видов ламп для . У каждого из них есть свои плюсы и минусы. Рассмотрим виды ламп которые наиболее часто используются для освещения в жилом доме или квартире.

Первый вид ламп – лампа накаливания . Это самый дешевый вид ламп. К плюсам таких ламп можно отнести ее стоимость, простоту устройства. Свет от таких ламп является наиболее лучшим для глаз. К минусам таких ламп можно отнести невысокий срок службы и большое количество потребляемой электроэнергии.

Следующий вид ламп – энергосберегающие лампы . Такие лампы можно встретить абсолютно для любых типов цоколей. Представляют из себя вытянутую трубку в которой находится специальный газ. Именно газ создает видимое свечение. У современных энергосберегающих ламп, трубка может иметь самую разнообразную форму. Плюсы таких ламп: низкое энергопотребление по сравнению с лампами накаливания, дневное свечение, большое выбор цоколей. К минусам таких ламп можно отнести сложность конструкции и мерцание. Мерцание обычно незаметно, но глаза будут уставать от света.

28.11.2019

Кабельная сборка — разновидность монтажного узла. Кабельная сборка представляет собой несколько местных , оконцованных с двух сторон в электромонтажном цехе и увязанных в пучок. Монтаж кабельной трассы, осуществляют, укладывая кабельную сборку в устройства крепления кабельной трассы (рис. 1).

Судовая кабельная трасса - электрическая линия, смонтированная на судне из кабелей (пучков кабелей), устройств крепления кабельной трассы, уплотнительных устройств и т. п. (рис. 2).

На судне кабельную трассу располагают в труднодоступных местах (по бортам, подволоку и переборкам); они имеют до шести поворотов в трех плоскостях (рис. 3). На крупных судах наибольшая длина кабелей достигает 300 м, а максимальная площадь сечения кабельной трассы — 780 см 2 . На отдельных судах с суммарной длиной кабелей свыше 400 км для размещения кабельной трассы предусматривают кабельные коридоры.

Кабельные трассы и проходящие по ним кабели подразделяют на местные и магистральные в зависимости от отсутствия (наличия) устройств уплотнения.

Магистральные кабельные трассы подразделяют на трассы с торцовыми и проходными коробками в зависимости от типа применения кабельной коробки. Это имеет смысл для выбора средств технологического оснащения и технологии монтажа кабельной трассы.

21.11.2019

В области разработки и производства приборов КИПиА американская компания Fluke Corporation занимает одну из лидирующих позиций в мире. Она была основана в 1948 году и с этого времени постоянно развивает, совершенствует технологии в области диагностики, тестирования, анализа.

Инновации от американского разработчика

Профессиональное измерительное оборудование от мультинациональной корпорации используется при обслуживании систем обогрева, кондиционирования и вентиляции, холодильных установок, проверки качества воздуха, калибровки электрических параметров. Фирменный магазин Fluke предлагает приобрести сертифицированное оборудование от американского разработчика. Полный модельный ряд включает:
  • тепловизоры, тестеры сопротивления изоляции;
  • цифровые мультиметры;
  • анализаторы качества электрической энергии;
  • дальномеры, вибромеры, осциллографы;
  • калибраторы температуры, давления и многофункциональные аппараты;
  • визуальные пирометры и термометры.

07.11.2019

Используют уровнемер для определения уровня разных видов жидкостей в открытых и закрытых хранилищах, сосудах. С его помощью измеряют уровень вещества или расстояние до него.
Для измерения уровня жидкости используют датчики, которые отличаются по типу: радарный уровнемер , микроволновый (или волноводный), радиационный, электрический (или емкостный), механический, гидростатический, акустический.

Принципы и особенности работы радарных уровнемеров

Стандартными приборами не определить уровень химически агрессивных жидкостей. Только радарный уровнемер способен его измерить, так как не соприкасается с жидкостью при работе. К тому же радарные уровнемеры более точные по сравнению, например, с ультразвуковыми или с емкостными.

Одним из основных требований потребителей к качеству электроэнергии является стабильность напряжения на шинах ДЭС в условиях изменения значения и характера (cosφ) нагрузки станции. При переходе от одного режима нагрузки ДЭС к другому напряжение на шинах ДЭС будет оставаться неизменным, если ток возбуждения генератора будет изменяться в соответствии с изменением нагрузки.

Поддержание стабильного напряжения генераторов дизельной электростанции (ДЭС) осуществляется устройствами (блоками) регулирования напряжения. Автоматические регуляторы напряжения по конструкции регулирующего органа подразделяются на два типа: электромеханические и электромагнитные.

Электромеханические регуляторы состоят из подвижных частей (электромагнитов с подвижными якорями, пружин и др.) и воздействуют на ток возбуждения с помощью изменения активного сопротивления цепи обмотки возбуждения. К этому виду относятся угольные регуляторы, которые совместно с другой аппаратурой (трансформаторами, выпрямителями и другими деталями) входят в блок регулирования напряжения (БРН). На генераторах с машинным возбуждением серий ДГС и ПС-93-4 устанавливаются блоки БРН с угольными регуляторами возбуждения.

Электромагнитные регуляторы состоят из статических (неподвижных) частей (трансформаторов, магнитных усилителей, конденсаторов, реакторов и др.) и изменяют ток возбуждения генератора с помощью дополнительного тока от регулятора обмотки возбуждения. К этому виду регуляторов относятся компаундирующие устройства с электромагнитной коррекцией, с магнитными усилителями и др.

На генераторах серии ЕСС устанавливают БРН, выполненные на принципе компаундирования, а для увеличения точности регулирования используется электромагнитный корректор напряжения.

На генераторах серий ДГФ и ГСФ БРН выполнен на принципе фазового компаундирования с полупроводниковым корректором напряжения.

На генераторах серии СГД устанавливают регуляторы напряжения типа РНА-60, работающие на принципе фазового компаундирования с управлением от электромагнитного корректора напряжения.

Блок БРН с угольным регулятором имеет четыре исполнения: 412, 421, 422, 423. Устройство и принцип работы всех блоков БРН одинаков.

Блок БРН состоит из угольного регулятора УРН, трансформатора регулятора напряжения Тр2, стабилизующего трансформатора Тр1, селеновых выпрямителей ВС1 и ВС2, конденсаторов С1, С2 и резисторов R3, R4, R5. Все элементы БРН укреплены на каркасе и закрыты съемным кожухом.

Угольный регулятор напряжения типа УРН представляет собой прямоходовой электромеханический регулятор реостатного типа.

Рис.1. Угольный регулятор напряжения типа УРН-423.
а - общий вид; б - продольный разрез;
1 - слюдяные прокладки; 2 - фарфоровая втулка; 3,12,22,29 - винты;
4 - скоба; 5 - нажимный винт; 6 - стопорный винт;
7 - неподвижный угольный контакт; 8 - корпус регулятора;
9 - керамическая (фарфоровая) трубка; 10 - угольный столб;
11 - подвижный угольный контакт; 13 - колпак;
14 - контактная пластина; 15 - пластина для магнитопровода;
19 - стопорный винт сердечника; 20 - сердечник;
21 - основание магнитопровода; 23 - обмотка электромагнита;
24 - диамагнитная шайба; 25 - опорное коническое кольцо;
26 - пакеты пружин; 27 - якорь; 28 - пластина для крепления пружин;
30 - плунжер; 31 - амортизатор.

Регулятор типа УРН (рис.1) состоит из электромагнита с сердечником, якоря подвижной системы регулятора, над которым расположены пакеты пружин, угольных столбов, помещенных в фарфоровую трубку, расположенную на корпусе регулятора, неподвижного и подвижного угольных контактов, к которым подключены проводники.

Угольный столб 10, набранный из шероховатых отдельных шайб, включен с помощью контактов 7 и 11 в цепь обмотки возбуждения возбудителя. На угольный столб действует пружина 26, сжимающая угольные шайбы столба, и якорь 27, противодействующий сжатию пружины. Общая площадь соприкосновения угольных шайб столба, а следовательно, и его сопротивление зависят от давления, поэтому разность этих двух сил определяет сопротивление цепи обмотки возбуждения возбудителя.

При номинальном напряжении генератора подвижная система угольного регулятора находится в равновесии (усилия якоря электромагнита и пружины, сжимающей шайбы угольного столба УРН, равны). При увеличении нагрузки генератора напряжение на его выводах уменьшится, в связи с этим уменьшится ток в обмотке электромагнита УРН. Под действием пружины 26 подвижная система УРН сместится, что вызовет сжатие угольного столба и изменение (уменьшение) его сопротивления.

Уменьшение сопротивления приведет к увеличению тока в обмотках возбуждения возбудителя и генератора, напряжение на выводах генератора увеличится. При повышении напряжения генератора, вызванного сбросом нагрузки, сопротивление угольного столба Ур увеличится, а напряжение на выводах генератора уменьшится.

Рис.2. Принципиальная схема БРН генератора с угольным регулятором УРН.
Г - генератор; В - возбудитель;
ОВГ - обмотка возбуждения генератора;
ОВВ - обмотка возбуждения возбудителя.

Обмотка электромагнита УРН (рис.2) включена на напряжение генератора через понижающий трансформатор Тр2 и выпрямитель ВС1. Конденсаторы C1 и С2 установлены для сглаживания пульсаций выпрямленного напряжения выпрямителя ВС1.

Последовательно с первичной обмоткой Тр2 включен резистор R5, служащий для компенсации температурного изменения сопротивления обмотки Тр2.

Реостат установки РУ включен в цепь вторичной обмотки Тр2 для установки уровня автоматического peгулирования напряжения. Угольный столб УРН и резистор R3 включены последовательно в цепь обмотки возбуждения возбудителя. Резистор R3 служит для уменьшения мощности рассеивания в угольном столбе УРН. Стабилизирующий трансформатор Тр1 служит для устранения неустановившихся колебаний напряжения генератора, возникающих при работе УРН. Первичная обмотка трансформатора Тр1 включена через сопротивление R4 на напряжение якоря возбудителя, а вторичная - последовательно в цепь электромагнита УРН. Параллельно обмотке возбуждения возбудителя подключен выпрямитель ВС2 для предохранения угольного столба УРН от подгара при перенапряжениях на зажимах обмотки возбуждения возбудителя.

При уменьшении напряжения генератора напряжение на первичной и вторичной обмотках трансформатора Тр2 понизится, что вызовет уменьшение тока в цепи электромагнита УРН и сопротивления угольного столба УРН.

Использование схемы компаундирования обеспечивает точность поддержания напряжения ±5%, а применение электромагнитного корректора увеличивает точное поддержания напряжения до ±2%.

Блок регулирования напряжения с электромагнитным корректором состоит из блока компаундирования, установленного на генераторе, и блока электромагнитного корректора.


Рис.3. Принципиальная схема дизель-генератора АД-20М

На рис.3 изображена принципиальная схема регулятора напряжения с электромагнитным корректором.

В регуляторе использован принцип фазовою компаундирования и применены три однофазных четырехобмоточных трансформатора ТТП с подмагничиванием от корректора напряжения. Одна из первичных обмоток ТТП включена последовательно с нагрузкой генератора, а другая - через линейный реактор Р параллельно нагрузке. Вторичная обмотка ТТП через выпрямитель СВ1 соединена с обмоткой возбудителя генератора.

Корректор напряжения состоит из автотрансформатора АТН, магнитного усилителя МУ и измерительного органа, имеющего нелинейный реактор НР, линейный реактор ЛP и конденсатор С2.

Небольшое увеличение напряжения на выводах генератора приводит к резкому увеличению тока реактора НР, который увеличивает ток в обмотке управления МУ. Возросший выходной ток МУ проходит через выпрямитель СВ2 и подается на обмотку подмагничивания трансформатора ТТП. Увеличение тока в обмотке подмагничивания вызовет уменьшение тока во вторичной обмотке ТТП и в обмотке возбуждения генератора, что приведет к уменьшению напряжения на выводах генератора.

При уменьшении напряжения на зажимах генератора наблюдается обратная картина. На дизель-генераторах кроме напряжения часто меняется и частота, поэтому в корректоре предусмотрена частотная компенсация.

В схеме корректора частотная компенсация осуществляется реактором ЛР и конденсатором С2, которые изменяют напряжение на реакторе ИР пропорционально изменению частоты генератора и оставляют ток HP неизменным. Эта схема обеспечивает независимость тока HP от изменения частоты и позволяет при изменении частоты от 48 до 52 Гц обеспечить изменение напряжения генератора в пределах ±2%.

Блок регулирования напряжения с полупроводниковым корректором напряжения. Полупроводниковый корректор напряжения в БРН предназначен для поддержания стабильного напряжения на выводах генератора в пределах ±2%.

Рис.4. Принципиальная схема полупроводникового корректора напряжения

Корректор напряжения (рис.4) собран на полупроводниковых элементах и работает в импульсном режиме. Он состоит из измерительного органа и усилителя.

Измерительный орган корректора измеряет напряжение на зажимах генератора и сравнивает его с заданным. Разность между действительным и заданным напряжениями служит сигналом, который управляет полупроводниковым усилителем, соединенным с обмоткой управления трансформатора компаундирования.

Измерительный орган состоит из трансформатора ТИ, первичная обмотка которого подключена на линейное напряжение генератора через резистор R15 и регулируемый резистор РУН, выпрямителя В1, кремниевого опорного диода В2, конденсаторов С1-С2, резисторов R1, R2, R3, R5, R6, терморезисторов R7-R9, транзистора Т1.

Напряжение генератора после выпрямителя В2 и сглаживающего фильтра R8-С1 поступает на вход транзистора Т1. Входной сигнал Т1 будет тем больше, чем больше напряжение генератора превышает опорное напряжение диода В2, т.е. измерительный орган корректора преобразует превышение напряжения генератора над опорным напряжением В2 в выходной ток транзистора Т1, поступающий на вход усилителя. Если U г

Резистор R2 смещает диапазон регулирования уставки напряжения. Цепочка С2-R5 служит для устранения автоколебаний при регулировании напряжения генератора, а регулирование чувствительности корректора производится резистором R*.

Схема усилителя состоит из транзисторов Т2, ТЗ, Т4, конденсатора С3, делителей напряжения R11, R12 и резистора R10. Напряжение подается на зажимы усилителя «+» и «-» от обмотки Wn через выпрямитель ВПУ.

Параметры элементов схемы выбраны так, что при отсутствии сигнала с измерительного органа транзисторы Т2 и ТЗ усилителя полностью открыты (режим насыщения), транзистор Т4 закрыт, т.е. обмотка управления, соединенная с коллектором транзистора Т4, отключена от выпрямителя питания корректора и в ней отсутствует подмагничивающий ток.

При появлении импульса выходного тока измерительного органа конденсатор СЗ заряжается этим импульсом и разряжается на сопротивление резистора R10. Образующееся на резисторе R10 падение напряжения закрывает транзистор Т2, так как оно приложено своим минусом к базе транзистора, а плюсом - к эмиттеру. Исчезновение тока через транзистор Т2, являющегося одновременно током смещения транзистора ТЗ, приводит к закрытию транзистора ТЗ и открытию транзистора Т4, так как по его переходу база - эмиттер будет протекать ток, ранее протекавший через транзистор ТЗ.

С открытием транзистора Т4 напряжение питания корректора целиком прикладывается к обмотке управления. С появлением нового импульса от измерительного органа процесс повторяется. Напряжение генератора на входе измерительного органа выпрямляется двухполупериодным выпрямителем и сглаживается фильтром C1-R8 только частично, поэтому выходной ток измерительного органа будет иметь вид узких импульсов, следующих с частотой 100 Гц. Частота импульса выходного напряжения транзистора Т4 будет также 100 Гц.

Выходное напряжение будет иметь вид прямоугольников, ширина которых зависит от напряжения на входе корректора. При большем напряжении на входе корректора растут импульсы выходного тока измерительного органа, т.е. до большего напряжения будет заряжаться емкость СЗ. Соответственно увеличивается время, в течение которого конденсатор, разряжаясь на резистор R10, удерживает транзистор Т2 в закрытом состоянии, а транзистор Т4 - в открытом. Время воздействия напряжения питания корректора на обмотку управления увеличивается, среднее значение тока управления возрастает; напряжение генератора поддерживается на заданном уровне.

Для термокомпенсации режимов работы транзисторов Т2-Т4 в цепь усилителя включены резисторы R14, R13 и выпрямитель В4, а для предупреждения ложного срабатывания корректора от пульсаций выпрямленного напряжения в цепь СЗ - база Т2 - эмиттер Т2 включен диод ВЗ.

Все элементы, входящие в состав корректора напряжения, смонтированы в алюминиевом корпусе и закрыты крышкой. Корректор имеет доску с зажимами, к которой с внутренней стороны подключены соответствующие элементы корректора.



Схемы генераторных установок


Генератор Г221 с регулятором напряжения РР380. Генераторная установка обеспечивает питание потребителей с номинальным напряжением 12В. Примененные в заводских схемах цифровые обозначения электрических выводов, отличающиеся от общепринятых, приведены на рисунке в скобках.

Для контроля заряда аккумуляторной батареи в схему включено реле RC702 и контрольная лампа Н, свечение которой при работе двигателя указывает на неисправность генераторной установки. Обмотка реле РС702 включена между нулевой точкой обмотки статора и положительным выводом генератора, т. е. питается от одной фазы генератора.

При неработающем двигателе и включенном выключателе зажигания S контрольная лампа светится. Она питается от батареи через замкнутые контакты реле РС702. Ток в обмотку реле от батареи проходить не будет, так как этому препятствует выпрямитель генератора.

При работающем генераторе контакты реле размыкаются, разрывая цепь питания контрольной лампы. Если лампа продолжает гореть при работе генератора, это свидетельствует о неисправности генераторной установки или реле РС702.

Регулятор напряжения РР380 двухступенчатый вибрационный. Он имеет две пары контактов К1 и К2. Контакты К1 включены между выводами « + » и Ш. Контакты К2 второй ступени включены между выводом Ш и корпусом.

Основная обмотка 00 регулятора включена между корпусом и через резистор RT выводом « + ». Добавочный резистор Ra составной - из двух параллельно соединенных резисторов. Последовательно резистору Я* включен дроссель Др. Вся цепочка включена параллельно контактам К1. Дроссель служит для уменьшения скорости нарастания тока через контакты К2 второй ступени, облегчая таким образом условия работы контактов.

Температурная компенсация регулятора осуществляется посредством подвески якорька на биметаллической пластине БП и включением в цепь основной обмотки регулятора резистора Ят-

Регулятор имеет два вывода: Ш (67) и « + » (15), которые соединены с соответствующими выводами генератора Г221.

При неработающем генераторе обмотка возбуждения через контакты выключателя зажигания питается от аккумуляторной батареи. Путь тока возбуждения: положительный вывод батареи-вывод « + » (15) регулятора - стойка неподвижного контакта первой ступени - контакты К1 и корпус реле - вывод Ш (67) регулятора - вывод Ш (67) генератора - обмотка возбуждения - корпус автомобиля - «-» батареи.

При напряжении генератора большем напряжения батареи обмотка возбуждения питается от генератора. Пока напряжение генератора меньше регулируемого значения, контакты К1 замкнуты, так как магнитный поток, создаваемый обмоткой 00 регулятора, недостаточен для притяжения якорька к сердечнику. Путь тока возбуждения через регу лятор тот же, что и при питании от батареи.

С увеличением частоты вращения ротора напряжение генератора возрастает. Когда оно достигает регулируемой величины, сила притяжения якорька к сердечнику станет достаточной для размыкания контактов К1. При разомкнутых контактах К1 ток возбуждения от вывода « + » (15) к выводу LL1 (67) регулятора проходит через дроссель Др и резистор. В результате ток возбуждения и, следовательно, напряжение генератора снизятся, и контакты К1 вновь замкнутся.

Рис. 1. Схема генератора Г221 с регулятором напряжения РР380

Работа первой ступени аналогична работе обычного регулятора напряжения. Отличие заключается в том, что величина сопротивления резистора Ra и дросселя Др, включаемых в цепь обмотки возбуждения при разомкнутых контактах К1, в несколько раз меньше, чем у одноступенчатых регуляторов. Таким образом обеспечивается уменьшение напряжения на контактах, т. е. улучшаются условия их работы.

Если при разомкнутых контактах К1 частота вращения ротора продолжает возрастать, будет возрастать и напряжение генератора. При этом увеличится ток обмотки 00 регулятора и сила притяжения якорька к сердечнику, что приведет к замыканию контактов К2. В результате вывод Ш (67) регулятора окажется замкнутым на массу, ток возбуждения снизится до нуля и резко уменьшится напряжение генератора. При уменьшении напряжения

уменьшится ток в обмотке 00 регулятора и под действием пружины контакты К2 разомкнутся. Затем процесс будет повторяться. При работе на второй ступени регулируемое напряжение немного повышается.

Таким образом, регулирование напряжения генератора на всем диапазоне изменения частоты вращения ротора обеспечивается попеременной работой первой и второй ступеней регулятора РР380.

Генератор 32.3701 с регулятором напряжения 201.3702 (рис. 2). Генераторная установка предназначена для бортовых сетей с номинальным напряжением 12 В.

Работает генераторная установка следующим образом. При включении выключателя зажигания S напряжение аккумуляторной батареи подается к выводам «4-» и «-» регулятора напряжения. Так как входной делитель, состоящий из резисторов Rl, R2, R3, R4, рассчитан таким образом, что напряжения аккумуляторной батареи недостаточно для отпирания транзистора VT1 (КТ315Б), указанный транзистор и транзистор VT3 (КТ3107В) находятся в закрытом состоянии, а транзисторы VT4, VT5 (составной транзистор КТ837Х) открываются током, протекающим по цепи: «) » - эмиттер-база VT5 - эмиттер-база VT4 - резистор R14 - резистор R13-резистор R12 - «-». Поскольку разность потенциалов на обкладках конденсатора С2 близка к нулю, тока в его цепи нет, что обусловливает закрытое состояние транзистора защиты VT2. В этом случае по цепи обмотки возбуждения генератора протекает ток, ограничиваемый только активным сопротивлением обмотки и падением напряжения между коллектором и эмиттером насыщенного транзистора VT5. При пуске двигателя и увеличении частоты вращения ротора уровень напряжения на выводах « + », «-» генератора начинает возрастать. Так как выводы « + ». «-» генератора присоединены к соответствующим выводам регулятора, соответственно повышается напряжение, приложенное к входному делителю Rl, R2, R3, R4. При достижении уровня, достаточного для отпирания транзистора VT1, последний открывается и соответственно открывается транзистор VT3. Напряжение между коллектором и эмиттером транзистора VT3 резко уменьшается, что вызывает запирание транзисторов VT4, VT5. При этом из-за резкого увеличения падения напряжения на участке коллектор-эмиттер транзистора VT5 по цепи конденсатор С2 - резистор R9 - эмиттер-база транзистора VT2 (КТ361Б) протекает ток, который открывает транзистор защиты VT2 и обеспечивает форсированное отпирание управляющего транзистора VT3 и запирание транзисторов VT4, VT5. Ток в цепи обмотки возбуждения уменьшается и соответственно уменьшается напряжение, вырабатываемое генераторной установкой. При снижении регулируемого напряжения до уровня, при котором запирается транзистор VT1, происходит запирание управляющего транзистора VT3 и отпирание транзисторов VT4, VT5. Транзистор защиты VT2 запирается, а конденсатор С2 разряжается по цепи: диод VD2 - ограничительный резистор R1 - коллектор-эмиттер силового транзистора VT5. В этом случае к базе управляющего транзистора VT3 через резистор R10 прикладывается положительный потенциал, форсирующий процесс отпирания силового транзистора VT5. Далее процесс регулирования протекает аналогично описанному выше, в результате чего регулируемое напряженйе автоматически поддерживается на заданном уровне.

Рис. 2. Схема генератора 32.3701 с регулятором напряжения 201.3702

Для снижения влияния пульсаций напряжения генераторной установки на уровень регулируемого напряжения между точкой соединения резисторов R3, R4 и эмиттером измерительного транзистора VT1 включен конденсатор С1.

Резистор R6 предназначен для повышения частоты переключений пегулятопа.

В режиме замыкания обмотки возбуждения на корпус (вывод Ш соединен с выводом М) транзисторы VT2, VT3, VT4, VT5 образуют схему релаксационного генератора, работающего в автоколебательном режиме. Процесс возникновения автоколебаний состоит в следующем. При открытом силовом транзисторе VT5 и замкнутой обмотке возбуждения в первоначальный момент времени ток в цепи транзистора VT5 ограничивается индуктивным сопротивлением присоединительных проводов. В дальнейшем транзистор VT5 переходит в линейный режим усиления, в связи с чем напряжение между коллектором и эмиттером начинает возрастать, а в цепи конденсатор С2 - резистор R9 - переход база-эмиттер транзистора VT2 возникает ток, открывающий транзисторы VT2, VT3. Силовой транзистор VT5 при этом закрывается. В таком состоянии схема находится в течение времени, обусловленного в основном постоянной времени цепи, состоящей из конденсатора С2 и резистора R9. При завершении процесса заряда конденсатора С2 транзисторы VT2, VT3 закрываются, а силовой транзистор VT5 открывается. При этом конденсатор С2 быстро разряжается через диод VD2, резистор R11 и открытый транзистор VT5. Далее процесс протекает аналогично вышеописанному, в результате чего в схеме регулятора возникают устойчивые автоколебания. В рассмотренном режиме через силовой транзистор VT5 протекает импульсный ток, среднее значение которого при выборе сопротивления резистора R9 значительно большим сопротивления резистора R11 пренебрежимо мало. После устранения короткого замыкания обмотки возбуждения регулятор включается в работу автоматически.

Основное назначение элементов схемы: VT1 - измерительный элемент; VT2 - транзистор защиты от замыкания вывода Ш на «-»; VT3 - управляющий элемент; VT4, VT5 - регулирующий элемент, выполненный в виде составного транзистора по схеме «Дарлингтон»; VD1 - опорный элемент; VD2 - диод схемы защиты; VD3 - гасящий диод; VD4 - диод, обеспечивающий защиту транзисторов регулятора от кратковременных импульсов напряжения обратной полярности; С/ - фильтрующий элемент; С2 - элемент цепи обратной связи; Rl-R4 - элементы входного делителя напряжения; R5 - резистор, обеспечивающий минимальный ток стабилитрона; R6 - резистор цепи отрицательной обратной связи; R7 - резистор, ограничивающий ток коллектора транзистора VT1; R8 - резистор цепи положительной обратной связи; R9-резистор, ограничивающий ток базы транзистора VT2; R10 - резистор базовой цепи транзистора VT3; R11 - резистор, ограничивающий ток диода VD2; R12-коллекторная нагрузка транзисторов VT2, VT3; R13 - резистор, обеспечивающий режим работы транзистора VT2; R14 - ограничительный резистор; R15 - резистор, обеспечивающий стабильность работы транзистора VT5.

Регулятор напряжения 201.3702 предназначен также для работы с генераторами Г284 и Г250. Точно такую же схему имеют регуляторы напряжения 22.3702 и 221.3702; отличаются они уровнем регулируемого напряжения и конструкцией выводов. У регулятора напряжения 201.3702 выводы штекерные, у регуляторов 22.3702 и 221.3702 - под винтовое соединение.

На многих современных автомобилях применяются генераторные установки со встроенными регуляторами напряжения. Схемы встроенных регуляторов напряжения подобны схемам обычных бесконтактных регуляторов. А так как интегральные регуляторы являются изделиями неремонтируемыми, не имеет смысла рассматривать особенности их схемного решения. Рассмотрим в целом схемы генераторных установок с учетом лишь тех особенностей схем интегральных регуляторов, которые влияют на схему в целом.

Генератор Г286А с интегральным регулятором напряжения Я112А (рис. 3). Интегральный регулятор Я112А применяется и с другими генераторами, предназначенными для питания потребителей с номинальным напряжением 12 В.

Питание обмотки возбуждения через регулятор Я112А осуществляется следующим образом. При замкнутых контактах выключателя зажигания S ток возбуждения протекает по цепи: вывод « + » аккумуляторной батареи - амперметр - контакты выключателя S - вывод В генераторной установки - вывод В регулятора напряжения - дублирующий вывод В регулятора напряжения - обмотка возбуждения - вывод Ш регулятора напряжения - переход коллектор-эмиттер выходного транзистора VT- корпус генератора и автомобиля - вывод «-» аккумуляторной батареи.

Рис. 3. Схема генератора Г286А с интегральным регулятором напряжения Я112А

Оба вывода В регулятора напряжения соединены проводником, по которому протекает ток возбуждения и от которого осуществляется питание схемы управления выходным транзистором VT (на рисунке схема управления не показана, а условно пунктиром показана связь базы транзистора с выводом В и гасящий диод VD). Таким образом, в регуляторе используется схема с объединенными входом и выходом, которая вместе с обмоткой возбуждения подключается на выводы « + » генератора и аккумуляторной батареи. Для контроля работы генератора и состояния зарядной цепи в схеме установлен амперметр.

На некоторых генераторных установках с интегральными регуляторами Я112А между выводами « + » и корпусом генератора устанавливается конденсатор С, назначение которого - уменьшение пульсаций напряжения в схеме электрооборудования и улучшение радиоприема.

Генератор Г222 с интегральным регулятором напряжения Я112В (рис. 2.16). Является генераторной установкой, предназначенной для питания потребителей с номинальным напряжением 12 В.

Отличительные особенности генераторной установки следующие. Во-первых, интегральный регулятор Я112В имеет разделенные вход и выход. Управление силовым транзистором VT осуществляется от отдельного вывода Б регулятора, который является выводом генераторной установки и соединен через контакты выключателя S с положительными выводами генератора и аккумуляторной батареи. Вывод В регулятора, через который подается питание на обмотку возбуждения, непосредственно соединен с положительным выводом генератора.

Рис. 4 Схема генератора Г222 с интегральным регулятором напряжения Я112В

Рис. 5. Схема генератора Г273 с интегральным регулятором напряжения Я120М

При такой схеме значительно уменьшена величина тока в цепи управления регулятором, что уменьшает колебания падения напряжения. В конечном счете это приводит к повышению стабильности регулируемого напряжения генераторной установки. Разгружаются также контакты выключателя S.

Для контроля состояния генераторной установки и в целом работы системы электроснабжения в схеме установлены уже известное реле РС702 с контрольной лампой Н и вольтметр.

Генератор Г273 (Г273А) с интегральным регулятором напряжения Я120М. Генераторная установка предназначена для питания потребителей с номинальным напряжением 24В.

В отличие от рассмотренных схем в генераторной установке применена принципиально отличающаяся схема включения цепи питания обмотки возбуждения и регулятора напряжения. Обмотка возбуждения и выходной транзистор VT вместе с гасящим диодом VD 1 выключены между нулевой точкой обмотки статора и корпусом. Питание обмотки возбуждения от аккумуляторной батареи при замкнутых контактах выключателя и неработающем двигателе осуществляется через подпиточный резистор R„oa. Ток при этом не превышает 0,3 А. При разомкнутых контактах выключателя S выходной транзистор закрыт и ток в обмотку возбуждения не поступает.

Применение такой схемы питания обмотки возбуждения позволило применить такой же ротор, как у 14-вольтовых генераторов.

Кроме того, такая схема включения обеспечивает:
— уменьшение перенапряжения на выходном транзисторе, когда он находится в закрытом состоянии, за счет уменьшения более чем в 2 раза напряжения питания;
— устранение разряда аккумуляторной батареи при неработающем двигателе и включенном выключателе S полным током возбуждения;
— исключение прохождения полного тока возбуждения через выходной транзистор регулятора напряжения при неработающем двигателе и включенном выключателе S;
— уменьшение тока через контакты выключателя S в цепи управления регулятором напряжения, что способствует повышению стабильности регулируемого напряжения генераторной установки.

Кроме того, регулятор напряжения Я120М позволяет осуществлять регулирование напряжения на двух уровнях. Для этой цели в делитель напряжения, состоящий из резисторов Rl, R2, включен резистор R3. Второй конец резистора R3 соединен с выводом Р регулятора, который посредством выключателя Snp (выключатель посезонной регулировки) может подключаться к корпусу генератора. При разомкнутых контактах выключателя Snp соотношение между величинами сопротивлений резисторов R1, R2 таково, что рабочий пробой стабилитрона VD2 будет обеспечивать регулируемое напряжение 27,2 - 27,8 В. При замыкании контактов выключателя Snp параллельно резистору R2 включается резистор R3. При этом напряжение на резисторе R1 уменьшается, что обеспечивает пробой стабилитрона при большом входном напряжении. Регулируемое напряжение при этом обеспечивается в пределах 29 - 30В.

Генератор 37.3701 с интегральным регулятором напряжения 17.3702 (рис. 6). Генераторная установка предназначена для питания потребителей с номинальным напряжением 12 В.

Основной отличительной особенностью схемы генераторной установки является наличие встроенных в силовой выпрямитель трех дополнительных диодов VDa, которые при работающем двигателе вместе с минусовой группой силовых диодов VD образуют мостовую схему полного выпрямителя, от которой питается обмотка возбуждения.

Рис. 6. Схема генератора с интегральным регулятором напряжения 37.3701 17.3702

Питание обмотки возбуждения при замкнутых контактах выключателя S и неработающем двигателе осуществляется через параллельно включенные два дополнительных резистора Rr сопротивлением по 100 Ом каждый и лампу контроля исправности генераторной установки Н мощностью 1,2 Вт. Ток, протекающий по этой цепи, не превышает 0,4 А. Таким образом обеспечивается предварительное возбуждение генератора, позволяющее получить необходимую начальную частоту вращения ротора.

Интегральный регулятор выполнен с разделенными входом и выходом. Обмотка питается через вывод В. Схема управления регулятором постоянно подключена выводом Б к положительным выводам генераторной установки и аккумуляторной батареи. Поэтому при разомкнутых контактах выключателя S и неработающем двигателе происходит непрерывный разряд аккумуляторной батареи на входную цепь регулятора напряжения, что является недостатком схемы. Ток потребления входной цепи составляет 10 мА, что при длительных стоянках автомобиля (более месяца) может вызвать значительный разряд аккумуляторной батареи. Однако при такой схеме получены и значительные преимущества.

Например, регулирование напряжения осуществляется непосредственно на выводах « + » и «-», что исключает влияние падения напряжения на контактах выключателя S на стабильность напряжения в системе электроснабжения.

Контрольная лампа Н, включенная в цепь между аккумуляторной батареей и выводом дополнительных диодов, должна при замкнутых контактах выключателя S гореть при неработающем и гаснуть при работающем двигателе.

Если при неработающем двигателе лампа не горит, то: неисправна контрольная лампа; неисправен генератор (обрыв в цепи возбуждения); неисправен регулятор напряжения (разрыв выходной цепи); имеются разрывы в соединительных цепях между генератором и регулятором напряжения, а также во внешних цепях лампы.

Если при работающем двигателе контрольная лампа продолжает гореть, это может быть вызвано:
— обрывом приводного ремня вентилятора или его большим проскальзыванием;
—- неисправностями генераторной установки.

В случае чрезмерно большого напряжения генераторной установки лампа не горит и не сигнализирует о перезаряде аккумуляторной батареи. Поэтому в схему установлен вольтметр V, позволяющий, помимо лампы, контролировать напряжение генератора.

К атегория: - Электрооборудование автомобилей

Генератор - один из главных элементов электрооборудования автомобиля, обеспечивающий одновременное питание потребителей и подзаряд аккумуляторной батареи.

Принцип действия устройства построен на превращении механической энергии, которая поступает от мотора, в напряжение.

В комплексе с регулятором напряжения узел называется генераторной установкой.

В современных автомобилях предусмотрен агрегат переменного тока, в полной мере удовлетворяющий всем заявленным требованиям.

Устройство генератора

Элементы источника переменного тока спрятаны в одном корпусе, который также является основой для статорной обмотки.

В процессе изготовления кожуха применяются легкие сплавы (чаще всего алюминия и дюрали), а для охлаждения предусмотрены отверстия, обеспечивающие своевременный отвод тепла от обмотки.

В передней и задней части кожуха предусмотрены подшипники, к которым и крепится ротор - главный элемент источника питания.

В кожухе помещаются почти все элементы устройства. При этом сам корпус состоит из двух крышек, расположенных с левой и с правой стороны - около приводного вала и контрольных колец соответственно.

Две крышки объединяются между собой с помощью специальных болтов, изготовленных из алюминиевого сплава. Этот металл отличается незначительной массой и способностью рассеивать тепло.

Не менее важную роль играет щеточный узел, передающий напряжение на контактные кольца и обеспечивающий работу узла.

Изделие состоит из пары графитных щеток, двух пружин и щеткодержателя.

Также уделим внимание элементам, расположенным внутри кожуха:


Какие требования предъявляются к автомобильному генератору?

К генераторной установке автомобиля выдвигается ряд требований:

  • Напряжение на выходе устройства и, соответственно, в бортовой сети должно поддерживаться в определенном диапазоне, вне зависимости от нагрузки или частоты вращения коленвала.
  • Выходные параметры должны иметь такие показатели, чтобы в любом из режимов работы машины АКБ получала достаточное напряжение заряда.

При этом каждый автовладелец должен особое внимание уделять уровню и стабильности напряжения на выходе. Это требование вызвано тем, что аккумулятор чувствителен к подобным изменениям.

Например, в случае снижения напряжения ниже нормы АКБ не заряжается до необходимого уровня. В итоге возможны проблемы в процессе пуска мотора.

В обратной ситуации, когда установка выдает повышенное напряжение, аккумулятор перезаряжается и быстрее ломается.

Принцип работы автомобильного генератора, особенности схемы

Принцип действия генераторного узла построен на эффекте электромагнитной индукции.

В случае прохождения магнитного потока через катушку и его изменения, на выводах появляется и меняется напряжение (в зависимости от скорости изменения потока). Аналогичным образом работает и обратный процесс.

Так, для получения магнитного потока требуется подать на катушку напряжение.

Выходит, что для создания переменного напряжения требуются две составляющие:

  • Катушка (именно с нее снимается напряжение).
  • Источник магнитного поля.

Не менее важным элементом, как отмечалось выше, является ротор, выступающий в роли источника магнитного поля.

У полюсной системы узла присутствует остаточный магнитный поток (даже при отсутствии тока в обмотке).

Этот параметр небольшой, поэтому способен вызвать самовозбуждение только на повышенных оборотах. По этой причине по обмотке ротора пропускают сначала небольшой ток, обеспечивающий намагничивание устройства.

Упомянутая выше цепочка подразумевает прохождение тока от АКБ через лампочку контроля.

Главный параметр здесь - сила тока, которая быть в пределах нормы. Если ток будет завышенным, аккумулятор быстро разрядится, а если заниженным - возрастет риск возбуждения генератора на ХХ мотора (холостых оборотах).

С учетом этих параметров подбирается и мощность лампочки, которая должна составлять 2-3 Вт.

Как только напряжение достигает требуемого параметра, лампочка гаснет, а обмотки возбуждения питаются от самого автомобильного генератора. При этом источник питания переходит в режим самовозбуждения.

Снятие напряжения производится со статорной обмотки, которая выполнена в трехфазном исполнении.

Узел состоит 3-х индивидуальных (фазных) обмоток, намотанных по определенному принципу на магнитопроводе.

Токи и напряжения в обмотках смещены между собой на 120 градусов. При этом сами обмотки могут собираться в двух вариантах - «звездой» или «треугольником».

Если выбрана схема «треугольник», фазные токи в 3-х отмотках будут в 1,73 раза меньше, чем общий ток, отдаваемый генераторной установкой.

Вот почему в автомобильных генераторах большой мощности чаще всего применяется схема «треугольника».

Это как раз объясняется меньшими токами, благодаря которым удается намотать обмотку проводом меньшего сечения.

Такой же провод можно использовать и в соединениях типа «звезда».

Чтобы созданный магнитный поток шел по назначению, и направлялся к статорной обмотке, катушки находятся в специальных пазах магнитопровода.

Из-за появления магнитного поля в обмотках и в статорном магнитопроводе, появляются вихревые токи.

Действие последних приводит к нагреву статора и снижению мощности генератора. Для уменьшения этого эффекта при изготовлении магнитопровода применяются стальные пластины.

Выработанное напряжение поступает в бортовую сеть через группу диодов (выпрямительный мост), о котором упоминалось выше.

После открытия диоды не создают сопротивления, и дают току беспрепятственно проходить в бортовую сеть.

Но при обратном напряжении I не пропускается. Фактически, остается только положительная полуволна.

Некоторые производители автомобилей для защиты электроники меняют диоды на стабилитроны.

Главной особенностью деталей является способность не пропускать ток до определенного параметра напряжения (25-30 Вольт).

После прохождения этого предела стабилитрон «пробивается» и пропускает обратный ток. При этом напряжение на «плюсовом» проводе генератора остается неизменным, что не несет риски для устройства.

К слову, способность стабилитрона поддерживать на выводах постоянное U даже после «пробоя» применяется в регуляторах.

В результате после прохождения диодного моста (стабилитронов) напряжение выпрямляется, становится постоянным.

У многих типов генераторных установок обмотка возбуждения имеет свой выпрямитель, собранный из 3-х диодов.

Благодаря такому подключению, протекание тока разряда от АКБ исключено.

Диоды, относящиеся к обмотке возбуждения, работают по аналогичному принципу и питают обмотку постоянным напряжением.

Здесь выпрямительное устройство состоит из шести диодов, три их которых являются отрицательными.

В процессе работы генератора ток возбуждения ниже параметра, который отдает автомобильный генератор.

Следовательно, для выпрямления тока на обмотке возбуждения достаточно диодов с номинальным током до двух Ампер.

Для сравнения силовые выпрямители имеют номинальный ток до 20-25 Ампер. Если требуется увеличить мощность генератора, ставится еще одно плечо с диодами.

Режимы работы

Чтобы разобраться в особенностях функционирования автомобильного генератора, важно понять особенности каждого из режимов:

  • В процессе пуска двигателя главным потребителем электрической энергии выступает стартер. Особенностью режима является создание повышенной нагрузки, что приводит к уменьшению напряжения на выходе АКБ. Как следствие, потребители берут ток только с аккумулятора. Вот почему при таком режиме батарея разряжается с наибольшей активностью.
  • После завода двигателя автомобильный генератор переходит в режим источника питания. С этого момента устройство дает ток, который необходим для питания нагрузки в автомобиле и подзаряда АКБ. Как только аккумулятор набирает требуемую емкость, уровень зарядного тока снижается. При этом генератор продолжает играть роль главного источника питания.
  • После подключения мощной нагрузки, например, кондиционера, обогрева салона и прочих, скорость вращения ротора замедляется. В этом случае автомобильный генератор уже не способен покрыть потребности автомобиля в токе. Часть нагрузки перекладывается на АКБ, который работает в параллель с источником питания и начинает постепенно разряжаться.

Регулятор напряжения - функции, типы, контрольная лампа

Ключевым элементом генераторной установки является регулятор напряжения - устройство, поддерживающее безопасный уровень U на выходе статора.

Такие изделия бывают двух типов:

  • Гибридные - регуляторы, электрическая схема которых включает в себя как электронные приборы, так и радиодетали.
  • Интегральные - устройства, в основе которых лежит тонкопленочная микроэлектронная технология. В современных автомобилях наибольшее распространение получил именно этот вариант.

Не менее важный элемент - контрольная лампа, смонтированная на приборной панели, по которой можно делать вывод о наличии проблем с регулятором.

Зажигание лампочки в момент пуска мотора должно быть кратковременным. Если же она горит постоянно (когда генераторная установка в работе), это свидетельствует о поломке регулятора или самого узла, а также необходимости ремонта.

Тонкости крепления

Фиксация генераторной установки производится при помощи специального кронштейна и болтового соединения.

Сам узел крепится в передней части двигателя, благодаря специальным лапам и проушинам.

Если на автомобильном генераторе предусмотрены специальные лапы, последние находятся на крышках мотора.

В случае применения только одной фиксирующей лапы, последняя ставится только на передней крышке.

В лапе, установленной в задней части, как правило, предусмотрено отверстие с установленной в нем дистанционной втулкой.

Задача последней заключается в устранении зазора, созданного между упором и креплением.

Крепление генератора Audi A8.

А так агрегат крепиться на ВАЗ 21124.

Неисправности генератора и способы их устранения

Электрооборудование автомобиля имеет свойство ломаться. При этом наибольшие проблемы возникают с АКБ и генератором.

В случае выхода из строя любого из этих элементов эксплуатация ТС в нормальном режиме работы становится невозможной или же авто оказывается вовсе обездвиженным.

Все поломки генератора условно делятся на две категории:

  • Механические . В этом случае проблемы возникают целостностью корпуса, пружин, ременным приводом и прочими элементами, которые не связаны с электрической составляющей.
  • Электрические . Сюда относятся неисправности диодного моста, износ щеток, замыкание в обмотках, поломки реле регулятора и прочие.

Теперь рассмотрим список неисправностей и симптомы более подробно.

1. На выходе недостаточный уровень зарядного тока:


2. Вторая ситуация.

Когда автомобильный генератор выдает необходимый уровень тока, но АКБ все равно не заряжается.

Причины могут быть разными:

  • Низкое качество протяжки контакта «массы» между регулятором и основным узлом. В этом случае проверьте качество контактного соединения.
  • Выход из строя реле напряжения - проверьте и поменяйте его.
  • Износились или зависли щетки - замените или очистите от грязи.
  • Сработало защитное реле регулятора из-за наличия замыкания на «массу». Решение - отыскать место повреждения и убрать проблему.
  • Прочие причины - замасливание контактов, поломка регулятора напряжения, витковое замыкание в обмотках статора, плохое натяжение ремня.

3. Генератор работает, но издает повышенный шум.

Вероятные неисправности:

  • Замыкание между витками статора.
  • Износ места для посадки подшипника.
  • Послабление шкивной гайки.
  • Разрушение подшипника.

Ремонт генератора автомобиля всегда должен начинаться с точной диагностики проблемы, после чего причина устраняется путем профилактических мер или замены вышедшего из строя узла.

Практика эксплуатации показывает, что поменять автомобильный генератор несложно, но для решения задачи требуется соблюдать ряд правил:

  • Новое устройство должно иметь аналогичные токоскоростные параметры, как и у заводского узла.
  • Энергетические показатели должны быть идентичными.
  • Передаточные числа у старого и нового источника питания должны совпадать.
  • Устанавливаемый узел должен подходить по размерам и с легкостью крепится к мотору.
  • Схемы нового и старого автомобильного генератора должны быть одинаковыми.

Учтите, что устройства, смонтированные на автомобилях зарубежного производства, фиксируются не так, как отечественного, к примеру, как на генератор TOYOTA COROLLA
и Лада Гранта
.Следовательно, если менять иностранный агрегат изделием отечественного производства, придется установить новое крепление.

В завершение рассказа об автомобильных генераторах стоит выделить ряд советов, что необходимо, а чего нельзя делать автовладельцам в процессе эксплуатации.

Главный момент - установка, в процессе которой важно с предельным вниманием подойти к подключению полярности.

Если ошибиться в этом вопросе, выпрямительное устройство поломается и возрастает риск возгорания.

Аналогичную опасность несет и пуск двигателя при некорректно подключенных проводах.

Чтобы избежать проблем в процессе эксплуатации, стоит придерживаться ряда правил:

  • Следите за чистотой контактов и контролируйте исправность электрической проводки автомобиля. Отдельное внимание уделите надежности соединения. В случае применения плохих контактных проводов уровень бортового напряжения выйдет за допустимый предел.
  • Следите за натяжкой генератора. В случае слабого натяжения источник питания не сможет выполнять поставленные задачи. Если же перетянуть ремень, это чревато быстрым износом подшипников.
  • Отбрасывайте провода от генератора и АКБ при выполнении электросварочных работ.
  • Если контрольная лампочка загорается и продолжает гореть после пуска мотора, выясните и устраните причину.

Отдельное внимание стоит уделить реле-регулятору, а также проверке напряжения на выходе источника питания. В режиме заряда этот параметр должен быть на уровне 13,9-14,5 Вольт.

Кроме того, время от времени проверяйте износ и достаточность усилия щеток генератора, состояние подшипников и контактных колец.

Высота щеток должна измеряться при демонтированном держателе. Если последний износился до 8-10 мм, требуется замена.

Что касается усилия пружин, удерживающих щетки, оно должно быть на уровне 4,2 Н (для ВАЗ). При этом осматривайте контактные кольца - на них не должно быть следов масла.

Также автовладелец должен запомнить и ряд запретов, а именно:

  • Не оставляйте машину с подключенной АКБ, если имеются подозрения поломки диодного моста. В противном случае аккумулятор быстро разрядится, и возрастает риск воспламенения проводки.
  • Не проверяйте правильность работы генератора путем перемыкания его выводов или отключения АКБ при работающем двигателе. В этом случае возможна поломка электронных элементов, бортового компьютера или регулятора напряжения.
  • Не допускайте попадания технических жидкостей на генератор.
  • Не оставляйте включенным узел в случае, если клеммы АКБ были сняты. В противном случае это может привести к поломке регулятора напряжения и электрооборудования авто.

Реле-регулятор напряжения генератора — это неотъемлемая часть системы электрооборудования любого автомобиля. С его помощью производится поддержка напряжения в определенном диапазоне значений. В данной статье вы узнаете о том, какие конструкции регуляторов существуют на данный момент, в том числе будут рассмотрены механизмы, давно не используемые.

Основные процессы автоматического регулирования

Совершенно неважно, какой тип генераторной установки используется в автомобиле. В любом случае он имеет в своей конструкции регулятор. Система автоматического регулирования напряжения позволяет поддерживать определенное значение параметра, независимо от того, с какой частотой вращается ротор генератора. На рисунке представлен реле-регулятор напряжения генератора, схема его и внешний вид.

Анализируя физические основы, с использованием которых работает генераторная установка, можно прийти к выводу, что напряжение на выходе увеличивается, если скорость вращения ротора становится выше. Также можно сделать вывод о том, что регулирование напряжения осуществляется путем уменьшения силы тока, подаваемого на обмотку ротора, при повышении скорости вращения.

Что такое генератор

Любой автомобильный генератор состоит из нескольких частей:

1. Ротор с обмоткой возбуждения, вокруг которой при работе создается электромагнитное поле.

2. Статор с тремя обмотками, соединенными по схеме "звезда" (с них снимается переменное напряжение в интервале от 12 до 30 Вольт).

3. Кроме того, в конструкции присутствует трехфазный выпрямитель, состоящий из шести полупроводниковых диодов. Стоит заметить, что реле-регулятор напряжения генератора ВАЗ 2107 в системе впрыска) одинаков.

Но работать генератор без устройства регулирования напряжения не сможет. Причина тому — изменение напряжения в очень большом диапазоне. Поэтому необходимо использовать систему автоматического регулирования. Она состоит из устройства сравнения, управления, исполнительного, задающего и специального датчика. Основной элемент — это орган регулирования. Он может быть как электрическим, так и механическим.

Работа генератора

Когда начинается вращение ротора, на выходе генератора появляется некоторое напряжение. А подается оно на обмотку возбуждения посредством органа регулировки. Стоит также отметить, что выход генераторной установки соединен напрямую с аккумуляторной батареей. Поэтому на обмотке возбуждения напряжение присутствует постоянно. Когда увеличивается скорость ротора, начинает изменяться напряжение на выходе генераторной установки. Подключается реле-регулятор напряжения генератора Valeo или любого другого производителя к выходу генератора.

При этом датчик улавливает изменение, подает сигнал на сравнивающее устройство, которое анализирует его, сопоставляя с заданным параметром. Далее сигнал идет к устройству управления, от которого производится подача на Регулирующий орган способен уменьшить значение силы тока, который поступает к обмотке ротора. Вследствие этого на выходе генераторной установки производится уменьшение напряжения. Аналогичным образом производится повышение упомянутого параметра в случае снижения скорости ротора.

Двухуровневые регуляторы

Двухуровневая система автоматического регулирования состоит из генератора, выпрямительного элемента, аккумуляторной батареи. В основе лежит электрический магнит, его обмотка соединена с датчиком. Задающие устройства в таких типах механизмов очень простые. Это обычные пружины. В качестве сравнивающего устройства применяется небольшой рычаг. Он подвижен и производит коммутацию. Исполнительным устройством является контактная группа. Орган регулировки — это постоянное сопротивление. Такой реле-регулятор напряжения генератора, схема которого приведена в статье, очень часто используется в технике, хоть и является морально устаревшим.

Работа двухуровневого регулятора

При работе генератора на выходе появляется напряжение, которое поступает на обмотку электромагнитного реле. При этом возникает магнитное поле, с его помощью притягивается плечо рычага. На последний действует пружина, она используется как сравнивающее устройство. Если напряжение становится выше, чем положено, контакты электромагнитного реле размыкаются. При этом в цепь включается постоянное сопротивление. На обмотку возбуждения подается меньший ток. По подобному принципу работает реле-регулятор напряжения генератора ВАЗ 21099 и других автомобилей отечественного и импортного производства. Если же на выходе уменьшается напряжение, то производится замыкание контактов, при этом изменяется сила тока в большую сторону.

Электронный регулятор

У двухуровневых механических регуляторов напряжения имеется большой недостаток — чрезмерный износ элементов. По этой причине вместо электромагнитного реле стали использовать полупроводниковые элементы, работающие в ключевом режиме. Принцип работы аналогичен, только механические элементы заменены электронными. Чувствительный элемент выполнен на который состоит из постоянных резисторов. В качестве задающего устройства используется стабилитрон.

Современный реле-регулятор напряжения генератора ВАЗ 21099 является более совершенным устройством, надежным и долговечным. На транзисторах функционирует исполнительная часть устройства управления. По мере того как изменяется напряжение на выходе генератора, электронный ключ замыкает или размыкает цепь, при необходимости подключают добавочное сопротивление. Стоит отметить, что двухуровневые регуляторы являются несовершенными устройствами. Вместо них лучше использовать более современные разработки.

Трехуровневая система регулирования

Качество регулирования у таких конструкций намного выше, нежели у рассмотренных ранее. Ранее использовались механические конструкции, но сегодня чаще встречаются бесконтактные устройства. Все элементы, используемые в данной системе, такие же, как и у рассмотренных выше. Но отличается немного принцип работы. Сначала подается напряжение посредством делителя на специальную схему, в которой происходит обработка информации. Установить такой реле-регулятор напряжения генератора ("Форд Сиерра" также может оснащаться подобным оборудованием) допустимо на любой автомобиль, если знать устройство и схему подключения.

Здесь происходит сравнение действительного значения с минимальным и максимальным. Если напряжение отклоняется от того значения, которое задано, то появляется определенный сигнал. Называется он сигналом рассогласования. С его помощью производится регулирование силы тока, поступающего на обмотку возбуждения. Отличие от двухуровневой системы в том, что имеется несколько добавочных сопротивлений.

Современные системы регулирования напряжения

Если реле-регулятор напряжения генератора китайского скутера двухуровневый, то на дорогих автомобилях используются более совершенные устройства. Многоуровневые системы управления могут содержать 3, 4, 5 и более добавочных сопротивлений. Существуют также следящие системы автоматического регулирования. В некоторых конструкциях можно отказаться от использования добавочных сопротивлений.

Вместо них увеличивается частота срабатывания электронного ключа. Использовать схемы с электромагнитным реле попросту невозможно в следящих системах управления. Одна из последних разработок — это многоуровневая система управления, которая использует частотную модуляцию. В таких конструкциях необходимы добавочные сопротивления, которые служат для управления логическими элементами.

Как снимать реле-регулятор

Снять реле-регулятор напряжения генератора ("Ланос" или отечественная "девятка" у вас - не суть важно) довольно просто. Стоит заметить, что при замене регулятора напряжения потребуется всего один инструмент — плоская или крестовая отвертка. Снимать генератор или ремень и его привод не нужно. Большинство устройств находится на задней крышке генератора, причем объединены в единый узел с щеточным механизмом. Наиболее частые поломки происходят в нескольких случаях.

Во-первых, при полном стирании графитовых щёток. Во-вторых, при пробое полупроводникового элемента. О том, как провести проверку регулятора, будет рассказано ниже. При снятии вам потребуется отключить аккумуляторную батарею. Отсоедините провод, который соединяет регулятор напряжения с выходом генератора. Выкрутив оба крепежных болта, можно вытянуть корпус устройства. А вот реле-регулятор напряжения имеет устаревшую конструкцию - он монтируется в подкапотном пространстве, отдельно от щеточного узла.

Проверка устройства

Проверяется реле-регулятор напряжения генератора ВАЗ 2106, "копеек", иномарок одинаково. Как только произведете снятие, посмотрите на щетки - у них должна быть длина более 5 миллиметров. В том случае, если этот параметр отличается, нужно проводить замену устройства. Чтобы осуществить диагностику, потребуется источник постоянного напряжения. Желательно, чтобы можно было изменить выходную характеристику. В качестве источника питания можно использовать аккумулятор и пару пальчиковых батареек. Еще вам необходима лампа, она должна работать от 12 Вольт. Вместо нее можно использовать вольтметр. Подключаете плюс от питания к разъему регулятора напряжения.

Соответственно, минусовой контакт соединяете с общей пластиной устройства. Лампочку или вольтметр соединяете со щетками. В таком состоянии между щетками должно присутствовать напряжение, если на вход подается 12-13 Вольт. Но если вы будете подавать на вход больше, чем 15 Вольт, между щетками напряжения не должно быть. Это признак исправности устройства. И совершенно не имеет значения, диагностируется реле-регулятор напряжения генератора ВАЗ 2107 или другого автомобиля. Если же контрольная лампа горит при любом значении напряжения или вовсе не загорается, значит, присутствует неисправность узла.

Выводы

В системе электрооборудования автомобиля реле-регулятор напряжения генератора "Бош" (как, впрочем, и любой иной фирмы) играет очень большую роль. Как можно чаще следите за его состоянием, проверяйте на наличие повреждений и дефектов. Случаи выхода из строя такого устройства нередки. При этом в лучшем случае разрядится аккумуляторная батарея. А в худшем может повыситься напряжение питания в бортовой сети. Это приведет к выходу из строя большей части потребителей электроэнергии. Кроме того, может выйти из строя и сам генератор. А его ремонт обойдется в кругленькую сумму, а если учесть, что АКБ очень быстро выйдет из строя, расходы и вовсе космические. Стоит также отметить, что реле-регулятор напряжения генератора Bosch является одним из лидеров по продажам. У него высокая надежность и долговечность, а характеристики максимально стабильны.